Skip to main content
Log in

Facile Fabrication of High‐Performance Hybrid Supercapacitor by One-Step, Self‐Grown Copper Nanopillar Forest Anchored with Fe3O4 Anode

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Hybrid supercapacitors are considered as one of the most promising next-generation energy storage devices, owing to high-energy, high-power density, and long-cycle life. In this work, a simple and low-cost fabrication method of the nanostructured anode with a high capacity and power is proposed for fabrication of high-performance hybrid supercapacitors. This is achieved by a one-step in-situ growth of numerous copper nanopillars on a commercially available copper foil though the galvanic displacement reaction in an aqueous ionic solution. The copper nanopillar forest-based structure with a high surface area, ion accessibility, and electron transportability provides excellent current collecting characteristics for the anode of a lithium-ion battery. The electrochemical performance of a Li half-cell incorporating the copper nanopillar-based current collector exhibits a high capacity (880 mAh g− 1 at 0.2 °C), excellent rate capability, and extremely high durability (97% after 1000 cycles). These results show that the fabricated anode structure can improve the electrochemical performance of the hybrid supercapacitors. To demonstrate the feasibility of an alternative power source, the full cell was fabricated by combining the copper nanopillar anode and an activated carbon cathode. This device provided a high energy density (98.9 Wh kg− 1 at 248 W kg− 1), high power density (7018 W kg− 1), and long-cycle life (> 1000 cycles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Evarts, E. C. (2015). To the limits of lithium. Nature, 526, S93–S95.

    Article  Google Scholar 

  2. Khalid, S., Raouf, I., Khan, A., Kim, N., & Kim, H. (2019). A review of human–powered energy harvesting for smart electronics: Recent progress and challenges. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 821–851.

    Article  Google Scholar 

  3. Lu, L., Han, X., Li, J., Hua, J., & Ouyang, M. (2013). A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 226, 272–288.

    Article  Google Scholar 

  4. Lee, H., Jeong, J., Park, Y., & Cha, S. (2017). Energy manangement strategy of hybrid electric vehicle using battery state of charge trajectory information. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(1), 79–86.

    Article  Google Scholar 

  5. Staff, L., Lundgren, P., & Enoksson, R. (2014). Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems. Nano Energy, 9, 128–141.

    Article  Google Scholar 

  6. Zhang, Y., & Yang, H. (2011). Modeling and characterization of supercapacitors for wireless sensor network applications. Journal of Power Sources, 196(8), 4128–4135.

    Article  Google Scholar 

  7. Zhang, F., Zhang, T., Yang, X., Zhang, L., Leng, K., Huang, Y., & Chen, Y. (2013). A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environmental Sciences, 6(5), 1623–1632.

    Article  Google Scholar 

  8. Younas, W., Naveed, M., Cao, C., Khalid, S., Rafai, S., Wang, Z., Wu, Y., & Yang, L. (2020). Rapid and simplistic microwave assisted method to synthesise cobalt selenide nanosheets; a prospective material for high performance hybrid supercapacitor. Applied Surface Science, 505, 144618.

    Article  Google Scholar 

  9. Won, J. H., Jeong, H. M., & Kang, J. K. (2017). Synthesis of Nitrogen-rich nanotubes with internal compartments having open mesoporous channels and utilization to hybrid full-cell capacitors enabling high energy and power densities over robust cycle life. Advanced Energy Materials, 7(1), 1601355.

    Article  Google Scholar 

  10. Zhang, Z., Du, W., Ren, X., Shen, Z., Fan, X., Wei, S., et al. (2019). Ni(OH)2-Co2(OH)3Cl bilayer nanocomposites supported by Ni foams for binder-free electrodes of high-performance hybrid supercapacitors. Applied Surface Science, 469, 624–633.

    Article  Google Scholar 

  11. Lee, J., Kim, H., Baek, E., Pecht, M., Lee, S., & Lee, Y. (2016). Improved performance of cylindrical hybrid supercapacitor using activated carbon/niobium doped hydrogen titanate. Journal of Power Sources, 301(1), 348–354.

    Article  Google Scholar 

  12. Kim, H., Cho, M., Kim, M., Park, K., Gwon, H., Lee, Y., et al. (2013). A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Advanced Energy Materials, 3(11), 1500–1506.

    Article  Google Scholar 

  13. Liu, X., Jung, H., Kim, S., Choi, H., Lee, S., Moon, J., & Lee, J. (2013). Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors. Scientific Reports, 3, 3183.

    Article  Google Scholar 

  14. Lee, J., Seok, J., Son, S., Yang, M., & Kang, B. (2017). High-energy, flexible micro-supercapacitors by one-step laser fabrication of a self-generated nanoporous metal/oxide electrode. Journal of Materials Chemistry A, 5, 24585–24593.

    Article  Google Scholar 

  15. Seok, J., Lee, J., Park, J., & Yang, M. (2019). Ultrafine copper nanopalm tree-like framework decorated with iron oxide for Li-ion battery anodes with exceptional rate capability and cycling stability. Advanced Energy Materials, 9(13), 1803764.

    Article  Google Scholar 

  16. Yu, J., Rho, Y., Kang, H., Jung, H., & Kang, K. (2015). Electrical behavior of laser-sintered Cu based metal-organic decomposition ink in air environment and application as current collectors in supercapacitor. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(4), 333–337.

    Article  Google Scholar 

  17. Valvo, M., Rehnlund, D., Lafont Ugo, Hahlin, M., Edstrom, K., & Nyholm, L. (2014). The impact of size effects on the electrochemical behaviour of Cu2O-coated Cu nanopillars for advanced Li-ion microbatteries. Journal of Materials Chemistry A, 2(25), 9574–9586.

    Article  Google Scholar 

  18. Lee, J., Yim, C., Lee, D., & Park, S. (2017). Manufacturing and characterization of physically-modified aluminum anodes based air battery with electrolyte circulation. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(1), 53–57.

    Article  Google Scholar 

  19. Chu, W., Kim, C., Lee, H., Choi, J., Park, J., Song, J., et al. (2013). Hybrid manufacturing in micro/nano scale: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 75–92.

    Article  Google Scholar 

  20. Liu, W., Zhang, S., Li, N., An, S., & Zheng, J. (2013). Preparation and characterization of sandwich-typed three-dimensional nanoporous copper-supported tin thin-film anode for lithium ion battery. International Journal of Electrochemical Science, 8, 3928–3938.

    Google Scholar 

  21. Zhao, X., Johnston, C., & Grant, P. (2009). A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. Journal of Materials Chemistry, 19, 8755–8760.

    Article  Google Scholar 

  22. Karthikeyan, K., Amaresh, S., Lee, S., Aravindan, V., & Lee, Y. (2014). Fluorine-doped Fe2O3 as high energy density electroactive material for hybrid supercapacitor applications. Chemistry: An Asian Journal, 9(3), 852–857.

    Google Scholar 

  23. Rani, J., Thangavel, R., Oh, S., Woo, J., Das, N., Kim, S., et al. (2017). High volumetric energy density hybrid supercapacitors based on reduced graphene oxide scrolls. ACS Applied Materials & Interfaces, 9(27), 22398–22407.

    Article  Google Scholar 

  24. Mondal, S., Rana, U., & Malik, S. (2017). Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. Journal of Physical Chemistry C, 121(14), 7573–7583.

    Article  Google Scholar 

  25. Chang, I., Huang, T., Lin, H., Tzeng, Y., Peng, C., Pan, F., et al. (2009). Growth of pagoda-topped tetragonal copper nanopillar arrays. ACS Applied Materials & Interfaces, 1(7), 1375–1378.

    Article  Google Scholar 

  26. Yamashita, T., & Hayes, P. (2008). Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 254(8), 2441–2449.

    Article  Google Scholar 

  27. Mitra, S., Poizot, P., Finke, A., & Tarascon, J. (2006). Growth and electrochemical characterization versus lithium of Fe3O4 electrodes made via electrodeposition. Advanced Functional Materials, 16, 2281–2287.

    Article  Google Scholar 

  28. Sorenson, T., Morton, S., Waddill, D., & Switzer, J. (2002). Epitaxial electrodeposition of Fe3O4 thin films on the low-index planes of gold. Journal of the American Chemical Society, 124, 7604–7609.

    Article  Google Scholar 

  29. Baltazar, A., Esparza, R., Rosas, G., & Perez, R. (2015). Effect of the surfactant on the growth and oxidation of iron nanoparticles. Journal of Nanomaterials, 240948, 1–8.

    Article  Google Scholar 

  30. Yusong, Z., Hosseini, H., Yi, S., Yaqiong, Y., & Yuping, W. (2013). A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. Journal of Materials Chemistry A, 1, 7790–7797.

    Article  Google Scholar 

  31. Han, H., Lee, J., & Cho, S. (2019). Comparatives studies on two-electrode symmetric supercapacitors based on polypyrrole:poly(4-styrenesulfonate) with different molecular weights of poly(4-styrenesulfonate). Polymers, 11, 232.

    Article  Google Scholar 

  32. Ghasem, O., Moslem, L., & Mojtaba, M. (2019). Nitrogen and sulfur co-doped graphene quantum dots decorated CeO2 nanoparticles/polyaniline: As high efficient hybrid supercapacitor electrode materials. Electrochimica Acta, 299, 125–131.

    Article  Google Scholar 

  33. Hekmat, F., Hosseini, H., Shahrokhian, S., & Emrah, U. (2020). Hybrid energy storage device from binder-free zinc-cobalt sulfide decorated biomass-derived carbon microspheres and pyrolyzed polyaniline nanotube-iron oxide. Energy Storage Materials, 25, 621–635.

    Article  Google Scholar 

  34. Halder, L., Maitra, A., Das, A. K., Bera, R., Karan, S. K., Paria, S., et al. (2008). High performance advanced asymmetric supercapacitor based on ultrathin and mesoporous MnCo2O4.5–NiCo2O4 hybrid and iron oxide decorated reduced graphene oxide electrode materials. Electrochimica Acta, 283, 438–447.

    Article  Google Scholar 

  35. Ghaly, H. A., El-Deen, A. G., Souaya, E. R., & Allam, N. K. (2019). Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities. Electrochimica Acta, 310(1), 58–69.

    Article  Google Scholar 

  36. Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7, 845–854.

    Article  Google Scholar 

  37. Liu, T., Lee, B., Lee, M., Park, J., Chen, Z., Noda, S., & Lee, S. (2018). Improved capacity of redox-active functional carbon cathodes by dimension reduction for hybrid supercapacitors. Journal of Materials Chemistry A, 6, 3367–3375.

    Article  Google Scholar 

  38. Khomenko, V., Pinero, E., & Beguin, F. (2008). High-energy density graphite/AC capacitor in organic electrolyte. Journal of Power Sources, 177(2), 643–651.

    Article  Google Scholar 

  39. Kim, H., Park, K., Cho, M., Kim, M., Hong, J., Jung, S., et al. (2014). High-performance hybrid supercapacitor based on graphene-wrapped Li4Ti5O12 and activated carbon. ChemElectroChem, 1, 125–130.

    Article  Google Scholar 

  40. Han, X., Ouyang, M., Lu, L., Li, J., Zheng, Y., & Li, Z. (2014). A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification. Journal of Power Sources, 251, 38–54.

    Article  Google Scholar 

  41. Kim, H., Surendran, S., Chae, Y., Lee, H. Y., An, T. Y., Han, H. S., et al. (2020). Fabrication of an ingenious metallic asymmetric supercapacitor by the integration of anodic iron oxide and cathodic nickel phosphide. Applied Surface Science, 511(1), 145424.

    Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Korea Institute of Industrial Technology (No. EH210002) and National Research Foundation of Korea (NRFK) (Grant No. 2020R1A2C1004784).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minyang Yang or Bongchul Kang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Seok, J.Y., Yang, M. et al. Facile Fabrication of High‐Performance Hybrid Supercapacitor by One-Step, Self‐Grown Copper Nanopillar Forest Anchored with Fe3O4 Anode. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 213–223 (2022). https://doi.org/10.1007/s40684-021-00328-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00328-5

Keywords

Navigation