Skip to main content
Log in

Machinability Investigation and Sustainability Assessment of Dry Cutting AISI1045 Steel Using Tools Configured with Shark-Skin-Inspired Structures and WS2/C Coatings

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This paper primarily determined the suitable technique for the preparation of WS2/C coating by the analytical hierarchy process (AHP) with a keen focus on the criteria of coating property, deposition process, resource and equipment. Further, some cutting performances of six cutting tools with different treatments, including cutting forces, cutting temperatures, wear mechanisms, tool life, etc. were investigated in dry cutting AISI1045 steel. The optimal lubricating condition for dry cutting process was obtained when using the cutting tools configured with the combination of WS2/C coating and shark-skin-inspired structures. Finally, the sustainability assessment was carried out by the calculation of the product sustainability index (PSI). The highest PSI of 78.6% was obtained in case of the dry cutting experiment using WMT-2-N tools, which provided a suggested favorable alternative considering both product and manufacturing process. Thus, dry cutting AISI1045 steel using WMT-2-N tools seems to be an environmentally-friendly machining process and would be helpful to enhance sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18.
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

γ 0 :

Rake angle (deg)

α 0 :

Clearance angle (deg)

κ r :

Cutting edge angle (deg)

λ s :

Edge inclination angle (deg)

f:

Feed rate (mm/r)

ap :

Depth of cutting (mm)

ν :

Cutting speed (m/min)

Ff :

Feed force (N)

Fp :

Radial thrust force (N)

Fc :

Tangential force (N)

μ :

Tool-chip friction coefficient

ϕ:

Shear angle (deg)

ξ :

Chip thickness ratio

ach :

Deformed chip thickness (mm)

acp :

Undeformed chip thickness (mm)

N:

Spindle speed (rpm

References

  1. Chetan, Ghosh, S., & Venkateswara Rao, P. (2015). Application of sustainable techniques in metal cutting for enhanced machinability: a review. Journal of Cleaner Production, 100, 17–34. https://doi.org/10.1016/j.jclepro.2015.03.039

    Article  Google Scholar 

  2. Jayal, A. D., Badurdeen, F., Dillon, O. W., & Jawahir, I. S. (2010). Sustainable manufacturing: modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology, 2, 144–152. https://doi.org/10.1016/j.cirpj.2010.03.006

    Article  Google Scholar 

  3. Moldavska, A., & Welo, T. (2017). The concept of sustainable manufacturing and its definitions: a content-analysis based literature review. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.08.006

    Article  Google Scholar 

  4. Motyka, M., Ziaja, W., Sieniawski, J. (2017). Titanium alloys novel aspects of their manufacturing and processing. IntechOpen. 2019. https://doi.org/10.5772/intechopen.82344

    Article  Google Scholar 

  5. Pusavec, F., Krajnik, P., & Kopac, J. (2010). Transitioning to sustainable production—Part I: application on machining technologies. Journal of Cleaner Production, 18, 174–184. https://doi.org/10.1016/j.jclepro.2009.08.010

    Article  Google Scholar 

  6. Klocke, F., & Eisenblätter, G. (1997). Dry cutting. CIRP Annals, 46, 519–526. https://doi.org/10.1016/S0007-8506(07)60877-4

    Article  Google Scholar 

  7. Marksberry, P. W. (2007). Micro-flood (MF) technology for sustainable manufacturing operations that are coolant less and occupationally friendly. Journal of Cleaner Production, 15, 958–971. https://doi.org/10.1016/j.jclepro.2006.01.006

    Article  Google Scholar 

  8. Calvert, G. M., Ward, E., Schnorr, T. M., & Fine, L. J. (1998). Cancer risks among workers exposed to metalworking fluids: a systematic review. American Journal of Industrial Medicine, 33, 282–292. https://doi.org/10.1002/(sici)1097-0274(199803)33:3%3c282::aid-ajim10%3e3.0.co;2-w

    Article  Google Scholar 

  9. Abdelrazek, A. H., Choudhury, I. A., Nukman, Y., & Kazi, S. N. (2020). Metal cutting lubricants and cutting tools: a review on the performance improvement and sustainability assessment. International Journal of Advanced Manufacturing Technology, 106, 4221–4245. https://doi.org/10.1007/s00170-019-04890-w

    Article  Google Scholar 

  10. Narasimhulu, A., Ghosh, S., & Rao, P. V. (2015). Study of tool wear mechanisms and mathematical modeling of flank wear during machining of Ti alloy (Ti6Al4V). Journal of The Institution of Engineers (India) Series C, 96, 279. https://doi.org/10.1007/s40032-014-0162-9

    Article  Google Scholar 

  11. Sharma, V. S., Dogra, M., & Suri, N. M. (2009). Cooling techniques for improved productivity in turning. International Journal of Machine Tools and Manufacture, 49, 435–453. https://doi.org/10.1016/j.ijmachtools.2008.12.010

    Article  Google Scholar 

  12. Li, X., Deng, J., Ge, D., & Yue, H. (2020). Rapid crystallization of electrohydrodynamically atomized ZrO2 thin films by laser annealing. Applied Surface Science, 510, 145510. https://doi.org/10.1016/j.apsusc.2020.145510

    Article  Google Scholar 

  13. Sadeghzade, S., Emadi, R., Tavangarian, F., & Doostmohammadi, A. (2020). The influence of polycaporolacton fumarate coating on mechanical properties and in vitro behavior of porous diopside-hardystonite nano-composite scaffold. Journal of the Mechanical Behavior of Biomedical Materials, 101, 103445. https://doi.org/10.1016/j.jmbbm.2019.103445

    Article  Google Scholar 

  14. Karthick, S., Shalini, S., Mani Prabu, S. S., Suhel, K., Vandan, A., Puneet, C., Manoj Kumar, S., Venkatesh, R., & Palani, I. A. (2020). Influence of quaternary alloying addition on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy coated optical fiber. Measurement, 153, 107379. https://doi.org/10.1016/j.measurement.2019.107379

    Article  Google Scholar 

  15. Domínguez-Meister, S., Conte, M., Igartua, A., Rojas, T. C., & Sanchez-Lopez, J. C. (2015). Self-lubricity of WSex nanocomposite coatings. ACS Applied Materials and Interfaces, 7, 7979–7986. https://doi.org/10.1021/am508939s

    Article  Google Scholar 

  16. Lian, Y., Chen, H., Mu, C., Deng, J., & Lei, S. (2018). Experimental investigation and mechanism analysis of tungsten disulfide soft coated micro-nano textured self-lubricating dry cutting tools. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 219–230. https://doi.org/10.1007/s40684-018-0022-9

    Article  Google Scholar 

  17. Xing, Y., Wu, Z., Yang, J., Wang, X., & Liu, L. (2020). LIPSS combined with ALD MoS2 nano-coatings for enhancing surface friction and hydrophobic performances. Surface and Coatings Technology, 385, 125396. https://doi.org/10.1016/j.surfcoat.2020.125396

    Article  Google Scholar 

  18. Tyagi, R., Das, A. K., & Mandal, A. (2018). Electrical discharge coating using WS2 and Cu powder mixture for solid lubrication and enhanced tribological performance. Tribology International, 120, 80–92. https://doi.org/10.1016/j.triboint.2017.12.023

    Article  Google Scholar 

  19. Ding, X., Zeng, X. T., He, X. Y., & Chen, Z. (2010). Tribological properties of Cr- and Ti-doped MoS2 composite coatings under different humidity atmosphere. Surface and Coatings Technology, 205, 224–231. https://doi.org/10.1016/j.surfcoat.2010.06.041

    Article  Google Scholar 

  20. Banerji, A., Bhowmick, S., & Alpas, A. T. (2016). Role of temperature on tribological behaviour of Ti containing MoS2 coating against aluminum alloys. Surface and Coatings Technology. https://doi.org/10.1016/j.surfcoat.2016.09.044

    Article  Google Scholar 

  21. Zhang, X., Qiao, L., Chai, L., Xu, J., Shi, L., & Wang, P. (2016). Structural, mechanical and tribological properties of Mo–S–N solid lubricant films. Surface and Coatings Technology, 296, 185–191. https://doi.org/10.1016/j.surfcoat.2016.04.040

    Article  Google Scholar 

  22. Xu, J., Chai, L., Qiao, L., He, T., & Wang, P. (2016). Influence of C dopant on the structure, mechanical and tribological properties of r.f.-sputtered MoS2/a-C composite films. Applied Surface Science, 364, 249–256. https://doi.org/10.1016/j.apsusc.2015.12.152

    Article  Google Scholar 

  23. Zeleny, J. (1914). The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 3, 69–91. https://doi.org/10.1103/PhysRev.3.69

    Article  Google Scholar 

  24. Li, X., Deng, J., Yue, H., Ge, D., & Zou, X. (2019). Wear performance of electrohydrodynamically atomized WS2 coatings deposited on biomimetic shark-skin textured surfaces. Tribology International, 134, 240–251. https://doi.org/10.1016/j.triboint.2019.02.015

    Article  Google Scholar 

  25. Li, X., Deng, J., Liu, L., Zhang, L., Sun, J., Ge, D., Liu, Y., & Duan, R. (2018). Tribological properties of WS2 coatings deposited on textured surfaces by electrohydrodynamic atomization. Surface and Coatings Technology, 352, 128–143. https://doi.org/10.1016/j.surfcoat.2018.08.011

    Article  Google Scholar 

  26. Zhang, J., Lee, Y. J., & Wang, H. (2020). Surface texture transformation in micro-cutting of AA6061-T6 with the rehbinder effect. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-020-00260-0

    Article  Google Scholar 

  27. Wei, Y., Kim, M.-R., Lee, D.-W., Park, C., & Park, S. S. (2017). Effects of micro textured sapphire tool regarding cutting forces in turning operations. International Journal of Precision Engineering and Manufacturing-Green Technology, 4, 141–147. https://doi.org/10.1007/s40684-017-0017-y

    Article  Google Scholar 

  28. Kawasegi, N., Sugimori, H., Morimoto, H., Morita, N., & Hori, I. (2009). Development of cutting tools with microscale and nanoscale textures to improve frictional behavior. Precision Engineering, 33, 248–254. https://doi.org/10.1016/j.precisioneng.2008.07.005

    Article  Google Scholar 

  29. Jianxin, D., Ze, W., Yunsong, L., Ting, Q., & Jie, C. (2012). Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes. International Journal of Refractory Metals and Hard Materials, 30, 164–172. https://doi.org/10.1016/j.ijrmhm.2011.08.002

    Article  Google Scholar 

  30. Sugihara, T., & Enomoto, T. (2009). Development of a cutting tool with a textured surface for dry cutting of aluminum alloys. International Journal of Automation Technology, 3, 199–203. https://doi.org/10.20965/ijat.2009.p0199

    Article  Google Scholar 

  31. Wang, Y., Li, N., Ma, Y., Tong, J., Pfleging, W., & Sun, J. (2020). Field experiments evaluating a biomimetic shark-inspired (BioS) subsoiler for tillage resistance reduction. Soil and Tillage Research, 196, 104432. https://doi.org/10.1016/j.still.2019.104432

    Article  Google Scholar 

  32. Fatima, A., & Mativenga, P. (2015). On the comparative cutting performance of nature-inspired structured cutting tool in dry cutting of AISI/SAE 4140. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture. https://doi.org/10.1177/0954405415617930

    Article  Google Scholar 

  33. Wan, C., & Gorb, S. (2019). Friction Reduction Mechanism of the Cuticle Surface in the Sandhopper Talitrus Saltator (Amphipoda. Talitridae): Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2019.10.031

    Book  Google Scholar 

  34. Lu, Y., Hua, M., & Liu, Z. (2014). The biomimetic shark skin optimization design method for improving lubrication effect of engineering surface. Journal of Tribology, 136, 317031–3170313. https://doi.org/10.1115/1.4026972

    Article  Google Scholar 

  35. Li, X., Deng, J., Lu, Y., Zhang, L., Sun, J., & Wu, F. (2019). Tribological behavior of ZrO2/WS2 coating surfaces with biomimetic shark-skin structure. Ceramics International, 45, 21759–21767. https://doi.org/10.1016/j.ceramint.2019.07.177

    Article  Google Scholar 

  36. Zhang, Y., Wang, R., Huang, P., Wang, X., & Wang, S. (2020). Risk evaluation of large-scale seawater desalination projects based on an integrated fuzzy comprehensive evaluation and analytic hierarchy process method. Desalination, 478, 114286. https://doi.org/10.1016/j.desal.2019.114286

    Article  Google Scholar 

  37. Zhang, K., Deng, J., Meng, R., Gao, P., & Yue, H. (2015). Effect of nano-scale textures on cutting performance of WC/Co-based Ti55Al45N coated tools in dry cutting. International Journal of Refractory Metals and Hard Materials. https://doi.org/10.1016/j.ijrmhm.2015.02.011

    Article  Google Scholar 

  38. Scharf, T. W., Prasad, S. V., Dugger, M. T., Kotula, P. G., Goeke, R. S., & Grubbs, R. K. (2006). Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS. Acta Materialia, 54, 4731–4743. https://doi.org/10.1016/j.actamat.2006.06.009

    Article  Google Scholar 

  39. Von Lim, Y., Wang, Y., Guo, L., Kong, D., Ang, L. K., Wong, J., & Yang, H. Y. (2017). Cubic-shaped WS2 nanopetals on Prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries. Journal of Materials Chemistry A. https://doi.org/10.1039/C7TA01821E

    Article  Google Scholar 

  40. Braham-Bouchnak, T., Germain, G., Morel, A., & Furet, B. (2015). Influence of high-pressure coolant assistance on the machinability of the titanium alloy Ti555–3. Machining Science and Technology, 19, 134–151. https://doi.org/10.1080/10910344.2014.991029

    Article  Google Scholar 

  41. Song, W., Wang, Z., Wang, S., Zhou, K., & Guo, Z. (2017). Experimental study on the cutting temperature of textured carbide tool embedded with graphite. International Journal of Advanced Manufacturing Technology, 93, 3419–3427. https://doi.org/10.1007/s00170-017-0683-5

    Article  Google Scholar 

  42. Shaw, M. C. (1984). Metal Cutting Principles. New York: Oxford University Press.

    Google Scholar 

  43. Groover, M. P. (2010). Fundamentals of modern manufacturing: materials, processes, and systems (4th ed.). New York: John Wiley & Sons.

    Google Scholar 

  44. Padhan, S., Das, A., Santoshwar, A., Dharmendrabhai, T. R., & Das, S. R. (2020). Sustainability assessment and machinability investigation of austenitic stainless steel in finish turning with advanced ultra-hard SiAlON ceramic tool under different cutting environments. Silicon. https://doi.org/10.1007/s12633-020-00409-1

    Article  Google Scholar 

  45. Kadam, G., & Pawade, R. (2017). Surface integrity and sustainability assessment in high-speed machining of Inconel 718—an eco-friendly green approach. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2017.01.104

    Article  Google Scholar 

  46. Zhao, D., Tian, Q., Wang, M., & Jin, Y. (2014). Study on the hydrophobic property of shark-skin-inspired micro-riblets. Journal of Bionic Engineering, 11, 296–302. https://doi.org/10.1016/S1672-6529(14)60046-9

    Article  Google Scholar 

  47. Hamdi, A., Bouchelaghem, H., Yallese, M., Mohamed, E., & Fnides, B. (2014). Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. International Journal of Advanced Manufacturing Technology, 73, 1775–1788. https://doi.org/10.1007/s00170-014-5950-0

    Article  Google Scholar 

  48. Jamil, M., Khan, A. M., He, N., Li, L., Iqbal, A., & Mia, M. (2019). Evaluation of machinability and economic performance in cryogenic-assisted hard turning of α-β titanium: a step towards sustainable manufacturing. Machining Science and Technology, 23, 1022–1046. https://doi.org/10.1080/10910344.2019.1652312

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province (ZR2018ZB0522), National Natural Science Foundation of China (51675311) and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Deng, J., Lu, Y. et al. Machinability Investigation and Sustainability Assessment of Dry Cutting AISI1045 Steel Using Tools Configured with Shark-Skin-Inspired Structures and WS2/C Coatings. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 83–106 (2022). https://doi.org/10.1007/s40684-021-00330-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00330-x

Keywords

Navigation