Skip to main content

Advertisement

Log in

Optimal design of preform shape based on EFA-FEM-GA integrated methodology

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Preform shape design for complex forging is an important and intractable aspect in the design of forging process. This paper presents an integrated methodology based on elliptic Fourier analysis (EFA), finite element method (FEM) and genetic algorithms (GA) to determine optimal preform shape. Firstly, an elliptic Fourier analysis, which has the advantages of wide versatility and short design cycle, is adopted as the transformation rule for the first time in this paper. The similarity between elliptic Fourier analysis and plastic forming process is demonstrated theoretically. Meanwhile, the main steps for using elliptic Fourier analysis module to design preform shape are introduced: two-dimensional slice, elliptic Fourier analysis and three-dimensional reconstruction. The preform shapes generated by elliptic Fourier analysis module can be simulated directly in finite element method module. Next, in order to control the deformation amount and material distribution of preform, two sets of design parameters, i.e., shape factor and triaxial scaling factors, are employed to control the preform shape before entering the finite element method module simulation. Then, these design parameters are optimized using the genetic algorithm module. Finally, taking a heavy forging with complex shapes as an example, its optimized design scheme is carried out in real forging production. The results show that the forging is produced without problems of crack, folds, underfilling and unreasonable flash distribution, which validates the effectiveness of the presented methodology. Furthermore, this integrated methodology could be extended to other complex forgings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kang BS, Kim N, Kobayashi S (1990) Computer-aided preform design in forging of an airfoil section blade. Int J Mach Tools Manuf 30(1):43–52. https://doi.org/10.1016/0890-6955(90)90040-P

    Article  Google Scholar 

  2. Gao Z, Grandhi RV (2000) Microstructure optimization in design of forging processes. Int J Mach Tools Manuf 40(5):691–711. https://doi.org/10.1016/S0890-6955(99)00083-8

    Article  Google Scholar 

  3. Park JJ, Hwang HS (2007) Preform design for precision forging of an asymmetric rib-web type component. J Mater Process Technol 187-188:595–599. https://doi.org/10.1016/j.jmatprotec.2006.11.034

    Article  Google Scholar 

  4. Jin Q, Han X, Hua L, Zhuang W, Feng W (2018) Process optimization method for cold orbital forging of component with deep and narrow groove. J Manuf Process 33:161–174. https://doi.org/10.1016/j.jmapro.2018.05.007

    Article  Google Scholar 

  5. Marek H, Jacek Z (2018) Application of the 3D reverse scanning method in the analysis of tool wear and forging defects. Measurement 128:204–213. https://doi.org/10.1016/j.measurement.2018.06.037

    Article  Google Scholar 

  6. Zhao J, Deng Y, Zhang J, Tang J (2019) Effect of forging speed on the formability, microstructure and mechanical properties of isothermal precision forged of Al-Zn-mg-cu alloy. Mater Sci Eng A 767:138366. https://doi.org/10.1016/j.msea.2019.138366

    Article  Google Scholar 

  7. Gao PF, Fei MY, Yan XG, Wang SB, Li YK, Xing L, Wei K, Zhan M, Zhou ZT, Keyim Z (2019) Prediction of the folding defect in die forging: a versatile approach for three typical types of folding defects. J Manuf Process 39:181–191. https://doi.org/10.1016/j.jmapro.2019.02.027

    Article  Google Scholar 

  8. Biba N, Vlasov A, Krivenko D, Duzhev A, Stebunov S (2020) Closed die forging preform shape design using isothermal surfaces method. Proc Manuf 47:268–273. https://doi.org/10.1016/j.promfg.2020.04.219

    Article  Google Scholar 

  9. Ko DC, Kim DH, Kim BM (1999) Application of artificial neural network and Taguchi method to preform design in metal forming considering workability. Int J Mach Tools Manuf 39(5):771–785. https://doi.org/10.1016/S0890-6955(98)00055-8

    Article  Google Scholar 

  10. Wang MH, Xiao GQ, Zhi L, Wang J (2018) Shape optimization methodology of clinching tools based on Bezier curve. Int J Adv Manuf Technol 94(5-8):2267–2280. https://doi.org/10.1007/s00170-017-0987-5

    Article  Google Scholar 

  11. Li F, Chen P, Han J, Deng L, Yi J, Liu Y, Eckert J (2020) Metal flow behavior of P/M connecting rod preform in flashless forging based on isothermal compression and numerical simulation. J Mater Res Technol 9(2):1200–1209. https://doi.org/10.1016/j.jmrt.2019.11.047

    Article  Google Scholar 

  12. Kim N, Kobayashi S (1990) Preform design in H-shaped cross section axisymmetric forging by finite element method. Int J Mach Tools Manuf 30(2):243–268. https://doi.org/10.1016/0890-6955(90)90134-5

    Article  Google Scholar 

  13. Kang BS, Lee JH, Kim BM, Choi JC (1995) Process design in flashless forging of rib/web-shaped plane-strain components by the finite element method. J Mater Process Technol 47(3–4):291–309. https://doi.org/10.1016/0924-0136(95)85005-8

    Article  Google Scholar 

  14. Zhao G, Wright E, Grandhi RV (1997) Sensitivity analysis based preform die shape design for net-shape forging. Int J Mach Tools Manuf 37(9):1251–1271. https://doi.org/10.1016/S0890-6955(96)00087-9

    Article  Google Scholar 

  15. Guan J, Wang GC, Guo T, Song LB, Zhao GQ (2009) The microstructure optimization of H-shape forgings based on preforming die design. Mater Sci Eng A 499(1–2):304–308. https://doi.org/10.1016/j.msea.2007.11.144

    Article  Google Scholar 

  16. Zhao X, Zhao G, Wang G, Wang T (2002) Preform die shape design for uniformity of deformation in forging based on preform sensitivity analysis. J Mater Process Technol 128(1–3):25–32. https://doi.org/10.1016/S0924-0136(02)00054-7

    Article  Google Scholar 

  17. Tang YC, Zhou XH, Chen J (2008) Preform tool shape optimization and redesign based on neural network response surface methodology. Finite Elem Anal Des 44(8):462–471. https://doi.org/10.1016/j.finel.2008.01.007

    Article  Google Scholar 

  18. Roy S, Ghosh S, Shivpuri R (1997) A new approach to optimal design of multi-stage metal forming processes with micro genetic algorithms. Int J Mach Tools Manuf 37(1):29–44. https://doi.org/10.1016/0890-6955(95)00120-4

    Article  Google Scholar 

  19. Ko DC, Kim DH, Kim BM, Choi JC (1998) Methodology of preform design considering workability in metal forming by the artificial neural network and Taguchi method. J Mater Process Technol 80-81(8):487–492. https://doi.org/10.1016/S0924-0136(98)00152-6

    Article  Google Scholar 

  20. Weiß A, Liewald M, Weiß A, Missal N (2018) Manufacture of face gearing – a new production method by means of determined material pre-distribution. Proc Manuf 15:511–518. https://doi.org/10.1016/j.promfg.2018.07.261

    Article  Google Scholar 

  21. Vogel M, Merklein M (2021) Manufacturing of tailored blanks by orbital forming with a two-sided material thickening. J Mater Process Technol 287(2021):116491. https://doi.org/10.1016/j.jmatprotec.2019.116491

    Article  Google Scholar 

  22. Besserer H, Hildenbrand P, Gerstein G, Rodman D, Nünberger F, Merklein M, Maier HJ (2016) Ductile damage and fatigue behavior of semi-finished tailored blanks for sheet-bulk metal forming processes[J]. J Mater Eng Perform 25(3):1136–1142. https://doi.org/10.1007/s11665-016-1908-8

    Article  Google Scholar 

  23. Vazquez V, Altan T (2000) Die design for flashless forging of complex parts. J Mater Process Technol 98(1):81–89. https://doi.org/10.1016/S0924-0136(99)00308-8

    Article  Google Scholar 

  24. Sedighi M, Tokmechi S (2008) A new approach to preform design in forging process of complex parts. J Mater Process Technol 197(1–3):314–324. https://doi.org/10.1016/j.jmatprotec.2007.06.043

    Article  Google Scholar 

  25. Park JJ, Rebelo N, Kobayashi S (1983) A new approach to preform design in metal forming with the finite element method. Int J Mach Tools Manuf 23(1):71–79. https://doi.org/10.1016/0020-7357(83)90008-2

    Article  Google Scholar 

  26. Zhao G, Wright E, Grandhi RV (1995) Forging preform design with shape complexity control in simulating backward deformation. Int J Mach Tools Manuf 35(9):1225–1239. https://doi.org/10.1016/0890-6955(94)00117-3

    Article  Google Scholar 

  27. Zhao G, Wright E, Grandhi RV (1996) Computer aided preform design in forging using the inverse die contact tracking method. Int J Mach Tools Manuf 36(7):755–769. https://doi.org/10.1016/0890-6955(96)00123-X

    Article  Google Scholar 

  28. Zhao G, Zhao Z, Wang T, Grandhi RV (1998) Preform design of a generic turbine disk forging process. J mater process Technol 84(1-3):193-201. 1https://doi.org/10.1016/S0924-0136(98)00221-0

  29. Zhao G, Wang G, Grandhi RV (2002) Die cavity design of near flashless forging process using FEM-based backward simulation. J Mater Process Technol 121(2):173–181. https://doi.org/10.1016/S0924-0136(01)00998-0

    Article  Google Scholar 

  30. Lee JH, Kim YH, Bae WB (1997) An upper-bound elemental technique approach to the process design of asymmetric forgings. J Mater Process Technol 72(1):141–151. https://doi.org/10.1016/S0924-0136(97)00145-3

    Article  Google Scholar 

  31. Lee JH, Kim YH, Bae WB (1997) A study on flash- and flashless-precision forging by the upper-bound elemental technique. J Mater Process Technol 72(3):371–379. https://doi.org/10.1016/S0924-0136(97)00197-0

    Article  Google Scholar 

  32. Lee SR, Lee YK, Park CH, Yang DY (2002) A new method of preform design in hot forging by using electric field theory. Int J Mech Sci 44(4):773–792. https://doi.org/10.1016/S0020-7403(02)00003-6

    Article  MATH  Google Scholar 

  33. Wang X, Li F (2009) A quasi-equipotential field simulation for preform design of P/M superalloy disk. Chinese J Aeronaut 22(1):81–86. https://doi.org/10.1016/S1000-9361(08)60072-2

    Article  Google Scholar 

  34. Cai J, Li F, Liu T (2011) A new approach of preform design based on 3D electrostatic field simulation and geometric transformation. Int J Adv Manuf Technol 56(5–8):579–588. https://doi.org/10.1007/S00170-011-3216-7

    Article  Google Scholar 

  35. Guan Y, Bai X, Liu M, Song L, Zhao G (2014) 3D preform design in forging process based on quasi-quipotential field and response surface methods. Process Eng 81:468–473. https://doi.org/10.1016/j.proeng.2014.10.024

    Article  Google Scholar 

  36. Guan Y, Bai X, Liu M, Song L, Zhao G (2015) Preform design in forging process of complex parts by using quasi-equipotential field and response surface methods. Int J Adv Manuf Technol 79(1–4):21–29. https://doi.org/10.1007/S00170-014-6775-6

    Article  Google Scholar 

  37. Tao Y, Zhou J, Cao J, Luo Y, Chen B (2015) Optimization design preform billet shape of 7050 aluminum alloy giant plane forgings based on electric field method and MBC toolbox. Int J Adv Manuf Technol 81(1–4):231–240. https://doi.org/10.1007/S00170-015-7149-4

    Article  Google Scholar 

  38. Chen H, Guan Y, Liu M, Li Y, Zhai J, Lin J (2020) Preform optimization of a brake drum part based on quasi-equipotential field and response surface methods. Proc Manuf 50:276–279. https://doi.org/10.1016/j.promfg.2020.08.051

    Article  Google Scholar 

  39. Kuhl FP, Giardina CR (1982) Elliptic Fourier features of a closed contour. Comput Graph Image Process 18(3):236–258. https://doi.org/10.1016/0146-664X(82)90034-X

    Article  Google Scholar 

  40. Diaz G, Zuccarelli A, Pelligra I, Ghiani A (1989) Elliptic Fourier analysis of cell and nuclear shapes. Comput Biomed Res 22(5):405–414. https://doi.org/10.1016/0010-4809(89)90034-7

    Article  Google Scholar 

  41. Neto JC, Meyer GE, Jones DD, Samal AK (2006) Plant species identification using elliptic Fourier leaf shape analysis. Comput Electron Agric 50(2):121–134. https://doi.org/10.1016/j.compag.2005.09.004

    Article  Google Scholar 

  42. Tracey SR, Lyle JM, Duhamel G (2006) Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish Res 77(2):138–147. https://doi.org/10.1016/j.fishres.2005.10.013

    Article  Google Scholar 

  43. Jeong Y, Radke RJ (2007) Reslicing axially sampled 3D shapes using elliptic Fourier descriptors. Med Image Anal 11(2):197–206. https://doi.org/10.1016/j.media.2006.12.003

    Article  Google Scholar 

  44. Valčić M, Prpić-Oršić J (2016) Hybrid method for estimating wind loads on ships based on elliptic Fourier analysis and radial basis neural networks. Ocean Eng 122:227–240. https://doi.org/10.1016/j.oceaneng.2016.06.031

    Article  Google Scholar 

  45. Caple JM, Byrd JE, Stephan CN (2018) The utility of elliptical Fourier analysis for estimating ancestry and sex from lateral skull photographs. Forensic Sci Int 289:352–362. https://doi.org/10.1016/j.forsciint.2018.06.009

    Article  Google Scholar 

  46. Tuset VM, Galimany E, Farrés A, Marco-Herrero E, Otero-Ferrer JL, Lombarte A, Ramón M (2020) Recognising mollusc shell contours with enlarged spines: wavelet vs elliptic Fourier analyses. Zoology 140:125778. https://doi.org/10.1016/j.zool.2020.125778

    Article  Google Scholar 

  47. Haipeng P, Tianrui Z (2007) Generation and optimization of slice profile data in rapid prototyping and manufacturing. J Mater Process Technol 187-188:623–626. https://doi.org/10.1016/j.jmatprotec.2006.11.221

    Article  Google Scholar 

  48. Lee SH, Ahn DG, Yang DY (2002) Surface reconstruction for mid-slice generation on variable lamination manufacturing. J Mater Process Technol 130-131:384–389. https://doi.org/10.1016/S0924-0136(02)00730-6

    Article  Google Scholar 

  49. Koc B, Ma Y, Lee YS (2000) Smoothing STL files by max-fit biarc curves for rapid prototyping. Rapid Prototyping J 6(3):186–205. https://doi.org/10.1108/13552540010337065

    Article  Google Scholar 

  50. Desbrun M, Meyer M, Schröder P, Barr AH (1999) Implicit fairing of irregular meshes using diffusion and curvature flow. Proc SIGGRAPH99:317–324. https://doi.org/10.1145/311535.311576

  51. Chitkara NR, Bhutta MA (1996) Near-net shape forging of spur gear forms: an analysis and some experiments. Int J Mech Sci 38(8–9):891–916. https://doi.org/10.1016/0020-7403(95)00097-6

    Article  Google Scholar 

  52. Tomov BI, Gagov VI (1999) Modelling and description of the near-net-shape forging of cylindrical spur gears. J Mater Process Technol 92-93:444–449. https://doi.org/10.1016/S0924-0136(99)00169-7

    Article  Google Scholar 

  53. Chitkara NR, Kim YJ (2001) Near-net shape forging of a crown gear: some experimental results and an analysis. Int J Mach Tools Manuf 41(3):325–346. https://doi.org/10.1016/S0890-6955(00)00083-3

    Article  Google Scholar 

  54. Cai J, Dean TA, Hu ZM (2004) Alternative die designs in net-shape forging of gears. J Mater Process Technol 150(1–2):48–55. https://doi.org/10.1016/j.jmatprotec.2004.01.019

    Article  Google Scholar 

  55. Petrov P, Perfilov V, Stebunov S (2006) Prevention of lap formation in near net shape isothermal forging technology of part of irregular shape made of aluminium alloy A92618. J Mater Process Technol 177(1–3):218–223. https://doi.org/10.1016/j.jmatprotec.2006.03.206

    Article  Google Scholar 

  56. Lu B, Ou H, Armstrong CG, Rennie A (2009) 3D die shape optimisation for net-shape forging of aerofoil blades. Mater Design 30(7):2490–2500. https://doi.org/10.1016/j.matdes.2008.10.007

    Article  Google Scholar 

  57. Takemasu T, Vazquez V, Painter B, Altan T (1996) Investigation of metal flow and preform optimization in flashless forging of a connecting rod. J Mater Process Technol 59(1–2):95–105. https://doi.org/10.1016/0924-0136(96)02290-X

    Article  Google Scholar 

  58. Gontarz A, Pater Z, Weroñski W (2004) Head forging aspects of new forming process of screw spike. J Mater Process Technol 153-154:736–740. https://doi.org/10.1016/j.jmatprotec.2004.04.164

    Article  Google Scholar 

  59. Kim H, Sweeney K, Altan T (1994) Application of computer aided simulation to investigate metal flow in selected forging operations. J Mater Process Technol 46(1–2):127–154. https://doi.org/10.1016/0924-0136(94)90107-4

    Article  Google Scholar 

  60. Kim HR, Seo MG, Bae WB (2002) A study of the manufacturing of tie-rod ends with casting/forging process. J Mater Process Technol 125:471–476. https://doi.org/10.1016/S0924-0136(02)00323-0

    Article  Google Scholar 

  61. Grass H, Krempaszky C, Werner E (2006) 3-D FEM-simulation of hot forming processes for the production of a connecting rod. Comput Mater Sci 36(4):480–489. https://doi.org/10.1016/j.commatsci.2005.06.003

    Article  Google Scholar 

  62. Deng L, Ren Z, Guo P, Jin J, Wang X, Li J (2019) Precision forming of long-axis forgings with rib-web sections via billet optimization based on flow characteristics. Int J Lightweight Mater Manuf 2(2):97–106. https://doi.org/10.1016/j.ijlmm.2019.04.006

    Article  Google Scholar 

  63. Kim TJ, Chitkara NR (2001) Determination of preform shape to improve dimensional accuracy of the forged crown gear form in a closed-die forging process. Int J Mech Sci 43(3):853–870. https://doi.org/10.1016/S0020-7403(00)00020-5

    Article  MATH  Google Scholar 

  64. Liu J, Cui Z (2009) Hot forging process design and parameters determination of magnesium alloy AZ31B spur bevel gear. J Mater Process Technol 209(18–19):5871–5880. https://doi.org/10.1016/j.jmatprotec.2009.06.015

    Article  Google Scholar 

  65. Razanica S, Malakizadi A, Larsson R, Cedergren S, Josefson BL (2020) FE modeling and simulation of machining alloy 718 based on ductile continuum damage. Int J Mech Sci 171:105375. https://doi.org/10.1016/j.ijmecsci.2019.105375

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51975072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wujiao Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Xu, W., Wang, Y. et al. Optimal design of preform shape based on EFA-FEM-GA integrated methodology. Int J Mater Form 14, 1043–1056 (2021). https://doi.org/10.1007/s12289-021-01620-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-021-01620-0

Keywords

Navigation