Skip to main content
Log in

Solving Type-2 Fuzzy Distributed Hybrid Flowshop Scheduling Using an Improved Brain Storm Optimization Algorithm

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The distributed hybrid flowshop scheduling (DHFS) problem is a common scheduling problem that has been researched in both academic and industrial fields during recent years. The uncertainty levels in realistic applications are generally too high to be represented by a deterministic value or a triangular fuzzy number (TFN) value. Considering the DHFS problem with type-2 fuzzy processing time and setup time constraints, an improved version of brain storm optimization was developed, where the objective is to minimize the maximum type-2 fuzzy completion time among all factories. The main contributions of this study are as follows: (1) each solution is represented by a two vectors, i.e., a scheduling vector and a factory assignment vector; (2) two realistic constraints, i.e., the type-2 fuzzy processing time in an uncertain environment and the setup time, make the problem more realistic; (3) a novel constructive heuristic based on the Nawaz-Enscore-Ham (NEH) method, called distributed NEH, is proposed; (4) several local search heuristics considering the problem features and the objective are developed to enhance the local search abilities; and (5) a simulated-annealing-based acceptance criterion is embedded to enhance the exploration abilities. The experimental results demonstrate that the proposed algorithm is more efficient and effective for solving the considered type-2 fuzzy DHFS problems in comparison with other recently published efficient algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Naderi, B., Ruiz, R.: The distributed permutation flowshop scheduling problem. Comput. Oper. Res. 37, 754–768 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Li, J.Q., Song, M.X., Wang, L., Duan, P.Y., Han, Y.Y., Sang, H.Y., Pan, Q.K.: Hybrid artificial bee colony algorithm for a parallel batching distributed flow shop problem with deteriorating jobs. IEEE Trans. Cybern. 50, 2425–2439 (2020)

    Google Scholar 

  3. Hatami, S., Ruiz, R., Andrés-Romano, C.: The distributed assembly permutation flowshop scheduling problem. Int. J. Prod. Res. 51, 5292–5308 (2013)

    Google Scholar 

  4. Sang, H.Y., Pan, Q.K., Li, J.Q., Wang, P., Han, Y.Y., Gao, K.Z., Duan, P.: Effective invasive weed optimization algorithms for distributed assembly permutation flowshop problem with total flowtime criterion. Swarm. Evol. Comput. 44, 64–73 (2019)

    Google Scholar 

  5. Li, J.Q., Du, Y., Gao, K.Z., Duan, P.Y., Gong, D.W., Pan, Q.K., Suganthan, P.N.: A hybrid iterated greedy algorithm for a crane transportation flexible job shop problem. IEEE Trans. Autom. Sci. Eng. (2021). In Press.

  6. Li, J.Q., Pan, Q.K., Tasgetiren, F.: A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities. Appl. Math. Model. 38, 1111–1132 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Lin, S.W., Ying, K.C.: Minimizing makespan for solving the distributed no-wait flowshop scheduling problem. Comput. Ind. End. 99, 202–209 (2016)

    Google Scholar 

  8. Ying, K.C., Lin, S.W.: Minimizing makespan for the distributed hybrid flowshop scheduling problem with multiprocessor tasks. Expert. Syst. Appl. 92, 132–141 (2018)

    Google Scholar 

  9. Rifai, A.P., Nguyen, H.T., Dawal, S.Z.M.: Multi-objective adaptive large neighborhood search for distributed reentrant permutation flow shop scheduling. Appl. Soft. Comput. 40, 42–57 (2016)

    Google Scholar 

  10. Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Math. Comput. Simulat. 60, 245–276 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Golneshini, F.P., Fazlollahtabar, H.: Meta-heuristic algorithms for a clustering-based fuzzy bi-criteria hybrid flow shop scheduling problem. Soft. Comput. 23, 12103–12122 (2019)

    Google Scholar 

  12. Zheng, J., Wang, L., Wang, J.J.: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop. Knowl.-Based. Syst. (2020). https://doi.org/10.1016/j.knosys.2020.105536

    Article  Google Scholar 

  13. Mirsanei, H.S., Zandieh, M., Moayed, M.J., Khabbazi, M.R.: A simulated annealing algorithm approach to hybrid flow shop scheduling with sequence-dependent setup times. J. Intell. Manuf. 22, 965–978 (2011)

    Google Scholar 

  14. Schulz, S., Neufeld, J.S., Buscher, U.: A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling. J. Clean. Prod. 224, 421–434 (2019)

    Google Scholar 

  15. Shao, W., Shao, Z., Pi, D.: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem. Knowl.-Based. Syst. (2020). https://doi.org/10.1016/j.knosys.2020.105527

    Article  Google Scholar 

  16. Sukkerd, W., Wuttipornpun, T.: Hybrid genetic algorithm and tabu search for finite capacity material requirement planning system in flexible flow shop with assembly operations. Comput. Ind. Eng. 97, 157–169 (2016)

    Google Scholar 

  17. Liao, C.J., Tjandradjaja, E., Chung, T.P.: An approach using particle swarm optimization and bottleneck heuristic to solve hybrid flow shop scheduling problem. Appl. Soft. Comput. 12, 1755–1764 (2012)

    Google Scholar 

  18. Li, J.Q., Tao, X.R., Jia, B.X., Han, Y.Y., Liu, C., Duan, P., Zheng, Z.X., Sang, H.Y.: Efficient multi-objective algorithm for the lot-streaming hybrid flowshop with variable sub-lots. Swarm. Evol. Comput. 52, 100600 (2020)

    Google Scholar 

  19. Li, J.Q., Pan, Q.K., Duan, P.Y.: An improved artificial Bee Colony Algorithm for solving hybrid flexible flowshop with dynamic operation skipping. IEEE Trans. Cybern. 46, 1311–1324 (2016)

    Google Scholar 

  20. Yu, C., Semeraro, Q., Matta, A.: A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine eligibility. Comput. Oper. Res. 100, 211–229 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Tao, X., Li, J., Huang, T., Duan, P.: Discrete imperialist competitive algorithm for the resource-constrained hybrid flowshop problem with energy consumption. Complex Intell. Syst. (2020). https://doi.org/10.1007/s40747-020-00193-w

    Article  Google Scholar 

  22. Yu, H., Li, J.Q., Zhang, L.J., Duan, P.: An imperialist competition algorithm using a global search strategy for physical examination scheduling. Appl. Intell. (2020). https://doi.org/10.1007/s10489-020-01975-y

    Article  Google Scholar 

  23. Lei, D., Gao, L., Zheng, Y.: A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop. IEEE. Trans. Eng. Manag. 65, 330–340 (2017)

    Google Scholar 

  24. Gao, J., Chen, R., Deng, W.: An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem. Int. J. Prod. Res. 51, 641–651 (2013)

    Google Scholar 

  25. Wang, S.Y., Wang, L., Liu, M., Xu, Y.: An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem. Int. J. Prod. Econ. 145, 387–396 (2013)

    Google Scholar 

  26. Naderi, B., Ruiz, R.: A scatter search algorithm for the distributed permutation flowshop scheduling problem. Eur. J. Oper. Res. 239, 323–334 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Fernandez-Viagas, V., Perez-Gonzalez, P., Framinan, J.M.: The distributed permutation flow shop to minimize the total flowtime. Comput. Ind. Eng. 118, 464–477 (2018)

    Google Scholar 

  28. Ruiz, R., Pan, Q.K., Naderi, B.: Iterated Greedy methods for the distributed permutation flowshop scheduling problem. Omega 83, 213–222 (2018)

    Google Scholar 

  29. Bargaoui, H., Belkahla Driss, O., Ghédira, K.: A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion. Comput. Ind. Eng. 111, 239–250 (2017)

    Google Scholar 

  30. Li, Y., Li, X., Gao, L., et al.: A discrete artificial bee colony algorithm for distributed hybrid flowshop scheduling problem with sequence-dependent setup times. Int. J. Prod. Res. (2020). https://doi.org/10.1080/00207543.2020.1753897

    Article  Google Scholar 

  31. Zare, H.K., Fakhrzad, M.B.: Solving flexible flow-shop problem with a hybrid genetic algorithm and data mining: A fuzzy approach. Expert. Syst. Appl. 38, 7609–7615 (2011)

    Google Scholar 

  32. Behnamian, J., Ghomi, S.M.T.F.: Hybrid flowshop scheduling with machine and resource-dependent processing times. Appl. Math. Model. 35, 1107–1123 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Choi, S.H., Wang, K.: Flexible flow shop scheduling with stochastic processing times: a decomposition-based approach. Comput. Ind. Eng. 63, 362–373 (2012)

    Google Scholar 

  34. Wang, K., Choi, S.H., Qin, H.: An estimation of distribution algorithm for hybrid flow shop scheduling under stochastic processing times. Int. J. Prod. Res. 52, 7360–7376 (2014)

    Google Scholar 

  35. Zhang, J., Qin, W., Song, D.L.: Hybrid flow shop rolling scheduling method considering uncertain working hours. J. Mech. Eng. 51, 99–108 (2015)

    Google Scholar 

  36. Gonzalez-Neira, E.M., Garcia-Caceres, R.G., Caballero-Villalobos, J.P., et al.: Stochastic flexible flow shop scheduling problem under quantitative and qualitative decision criteria. Comput. Ind. Eng. 101, 128–144 (2016)

    Google Scholar 

  37. Ahonen, H., Alvarenga, A.G.: Scheduling flexible flow shop with recirculation and machine sequence-dependent processing times: formulation and solution procedures. Int. J. Adv. Manuf. Technol. 89, 765–777 (2017)

    Google Scholar 

  38. Qin, W., Zhang, J., Song, D.: An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time. J. Intell. Manuf. 29, 891–904 (2018)

    Google Scholar 

  39. Zhou, B., Liu, W.: Energy-efficient multi-objective scheduling algorithm for hybrid flow shop with fuzzy processing time. P. I. Mech. Eng. I-J. Sys. 233, 1282–1297 (2019)

    Google Scholar 

  40. Yuan, F., Xu, X., Yin, M.: A novel fuzzy model for multi-objective permutation flow shop scheduling problem with fuzzy processing time. Adv. Mech. Eng. 11, 1687814019843699 (2019)

    Google Scholar 

  41. Zheng, J., Wang, L., Wang, J.: A cooperative coevolution algorithm for multi-objective fuzzy distributed hybrid flow shop. Knowl.-Based Syst. 194, 105536 (2020)

    Google Scholar 

  42. Melin, P., Castillo, O.: A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition. Appl. Soft. Comput. 21, 568–577 (2014)

    Google Scholar 

  43. Wu, D., Mendel, J.: Similarity measures for closed general type-2 fuzzy sets: overview, comparisons, and a geometric approach. IEEE. Trans. Fuzzy. Syst. 27, 515–526 (2019)

    Google Scholar 

  44. Mendel, J., Liu, X.: Simplified interval type-2 fuzzy logic systems. IEEE. Trans. Fuzzy. Syst. 21, 1056–1069 (2013)

    Google Scholar 

  45. Mendel, J., Wu, H.: Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 1, forward problems. IEEE. Trans. Fuzzy. Syst. 14, 781–792 (2006)

    Google Scholar 

  46. Mendel, J., Wu, H.: Type-2 fuzzistics for nonsymmetric interval type-2 fuzzy sets: forward problems. IEEE. Trans. Fuzzy. Syst. 15, 916–930 (2007)

    Google Scholar 

  47. Figueroa-García, J., Hernández, G.: A method for solving linear programming models with interval type-2 fuzzy constraints. Pesquisa. Oper. 34, 73–89 (2014)

    Google Scholar 

  48. Li, C., Yi, J., Zhang, G.: On the monotonicity of interval type-2 fuzzy logic systems. IEEE. Trans. Fuzzy. Syst. 22, 1197–1212 (2014)

    Google Scholar 

  49. Li, C., Zhang, G., Yi, J., Shang, F., Gao, J.: A fast learning method for data-driven design of interval type-2 fuzzy logic system. J. Intell. Fuzzy. Syst. 32, 2705–2715 (2017)

    Google Scholar 

  50. Melin, P., Olivas, F., Castillo, O., Valdez, F., Soria, J., Valdez, M.: Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic. Expert. Syst. Appl. 40, 3196–3206 (2013)

    Google Scholar 

  51. Castillo, O., Amadorangulo, L.: A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inf. Sci. (2017). https://doi.org/10.1016/j.ins.2017.10.032

    Article  Google Scholar 

  52. Olivas, F., Valdez, F., Melin, P., Sombra, A., Castillo, O.: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Inf. Sci. 476, 159–175 (2019)

    Google Scholar 

  53. Melin, P., Gonzalez, C., Castro, J., Mendoza, O., Castillo, O.: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. IEEE. Trans. Fuzzy. Syst. 22, 1515–1525 (2014)

    Google Scholar 

  54. Shukla, A., Nath, R., Muhuri, P., Lohani, Q.: Energy efficient multi-objective scheduling of tasks with interval type-2 fuzzy timing constraints in an Industry 4.0 ecosystem. Eng. Appl. Artif. Intell. 87, 103257 (2020). https://doi.org/10.1016/j.engappai.2019.103257

    Article  Google Scholar 

  55. Ontiverosrobles, E., Melin, P., Castillo, O.: Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika. 54, 175–201 (2018)

    MathSciNet  MATH  Google Scholar 

  56. Li, C., Yi, J., Wang, H., Zhang, G., Li, J.: Interval data driven construction of shadowed sets with application to linguistic word modelling. Inf. Sci. 507, 503–521 (2020)

    Google Scholar 

  57. Soto, J., Melin, P., Castillo, O.: A new approach for time series prediction using ensembles of IT2FNN models with optimization of fuzzy integrators. Int. J. Fuzzy. Syst. 20, 701–728 (2018)

    MathSciNet  Google Scholar 

  58. Li, J.Q., Liu, Z.M., Li, C.D., Zheng, Z.X.: Improved artificial immune system algorithm for type-2 fuzzy flexible job shop scheduling problem. IEEE. Trans. Fuzzy. Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.3016225

    Article  Google Scholar 

  59. Shi, Y.H.: Brain storm optimization algorithm. International Conference in Swarm Intelligence, pp. 303–309. Springer, Berlin (2011)

    Google Scholar 

  60. Jia, Z.X., Duan, H.B., Shi, Y.H.: Hybrid brain storm optimisation and simulated annealing algorithm for continuous optimisation problems. Int. J. Bio Inspir. Comput. 8, 109–121 (2016)

    Google Scholar 

  61. Yu, Y., Gao, S.C., Cheng, S., Wang, Y.R., Song, S.Y., Yuan, F.G.: CBSO: a memetic brain storm optimization with chaotic local search. Memetic. Comput. 10, 353–367 (2017)

    Google Scholar 

  62. Shi, Y.H., Xue, J.Q., Wu, Y.L.: Multi-objective optimization based on brain storm optimization algorithm. IJSIR. 4, 1–21 (2013)

    Google Scholar 

  63. Duan, H., Li, S., Shi, Y.: Predator–prey brain storm optimization for DC brushless motor. IEEE. Trans. Magn. 49, 5336–5340 (2013)

    Google Scholar 

  64. Sun, C., Duan, H., Shi, Y.: Optimal satellite formation reconfiguration based on closed-loop brain storm optimization. IEEE. Comput. Intell. Mag. 8, 39–51 (2013)

    Google Scholar 

  65. Ma, X., Jin, Y., Dong, Q.: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting. Appl. Soft. Comput. 54, 296–312 (2017)

    Google Scholar 

  66. Ke, L.: A brain storm optimization approach for the cumulative capacitated vehicle routing problem. Memet. Comput. 10, 411–421 (2018)

    Google Scholar 

  67. Nawaz, M., Enscore Jr., E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11, 91–95 (1983)

    Google Scholar 

  68. Revathi, S.T., Ramaraj, N., Chithra, S.: Brain storm-based Whale Optimization Algorithm for privacy-protected data publishing in cloud computing. Clust. Comput. 22, 3521–3530 (2019)

    Google Scholar 

  69. Yan, X., Zhu, Z., Wu, Q., Gong, W., Wang, L.: Elastic parameter inversion problem based on brain storm optimization algorithm. Memetic. Comput. 11, 143–153 (2019)

    Google Scholar 

  70. Arai, K., Fukuyama, Y., Iizaka, T., Matsui, T.: Dependable multi-population improved brain storm optimization with differential evolution for optimal operational planning of energy plants. Electr. Eng. Jpn. 207, 25–35 (2019)

    Google Scholar 

  71. Liang, X.P., Guo, Z.J., Zhu, C.H., Guo, Z.J.: BP neural network fuzzy image restoration based on brain storming optimization algorithm. J. Electron. Inf. Technol. 41, 2980–2986 (2019)

    Google Scholar 

  72. Kumar, T.D., Venkatesan, P.: Performance estimation of multicarrier CDMA using adaptive brain storm optimization for 5G communication system in frequency selective fading channel. Trans. Emerg. Telecommun. Technol. (2019). https://doi.org/10.1002/ett.3829

    Article  Google Scholar 

  73. Guo, Y., Yang, H., Chen, M., Gong, D., Cheng, S.: Grid-based dynamic robust multi-objective brain storm optimization algorithm. Soft. Comput. (2019). https://doi.org/10.1007/s00500-019-04365-w

    Article  Google Scholar 

  74. Cervantes-Castillo, A., Mezura-Montes, E.: A modified brain storm optimization algorithm with a special operator to solve constrained optimization problems. Appl. Intell. (2020). https://doi.org/10.1007/s10489-020-01763-8

    Article  Google Scholar 

  75. Li, J.Q., Han, Y.Q., Duan, P.Y., Han, Y.Y., Niu, B., Li, C.D., Zheng, Z.X., Liu, Y.P.: Meta-heuristic algorithm for solving vehicle routing problems with time windows and synchronized visit constraints in prefabricated systems. J. Clean Prod. 250, 119464 (2020)

    Google Scholar 

Download references

Acknowledgements

This research is partially supported by National Science Foundation of China under Grant 61773192, 61803192, 61773246.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqing Li.

Appendix

Appendix

The list of acronyms used in this study is given as follows:

  • FSP: flowshop scheduling problem

  • HFS: hybrid flowshop scheduling

  • FJSP: flexible job shop scheduling problem

  • DFSP: distributed flow shop scheduling problems

  • DAPFSP: distributed assembly permutation flowshop scheduling problems

  • DFJSP: distributed flexible job shop scheduling problems

  • TFN: triangular fuzzy number

  • T1FLS: type-1 fuzzy logic system

  • T2FS: type-2 fuzzy logic system

  • BSO: brain storm optimization

  • VNS: variable neighborhood search

  • ILS: iterated local search

  • SA: simulated annealing

  • IG: iterated greedy

  • FOA: fruit fly optimization algorithm

  • TS: tabu search

  • PSO: particle swarm optimization

  • ABC: artificial bee colony

  • GA: genetic algorithm

  • TLBO: teaching-learning-based optimization

  • SS: scatter search

  • CRO: chemical reaction optimization

  • EDA: estimation of distribution algorithm

  • ANOVA: analysis of variance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, J., Zhang, L. et al. Solving Type-2 Fuzzy Distributed Hybrid Flowshop Scheduling Using an Improved Brain Storm Optimization Algorithm. Int. J. Fuzzy Syst. 23, 1194–1212 (2021). https://doi.org/10.1007/s40815-021-01050-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01050-9

Keywords

Navigation