Skip to main content
Log in

Fabrication of Miniaturized Microfluidic Paper-Based Analytical Devices for Sandwich Enzyme-Linked Immunosorbent Assays using INKJET Printing

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Main application of microfluidic paper-based analytical devices (µPADs) is for low-cost and portable assays. In order to reduce the cost, miniaturization seems to be an effective way to save reagents, samples, materials, etc. Present study demonstrates that mini-µPADs based on nitrocellulose membrane with only 2 main channels can perform sandwich enzyme-linked immunosorbent assays (ELISA) for quantitative determination of human chorionic gonadotropin (hCG). Moreover, the width and the length of these devices are only about 4.0 and 33.4 mm, respectively. Inkjet printing technology, having the advantages of simple and material-saving process, was used to create hydrophobic barrier. Colorimetric signals from ELISA captured by digital camera and measured by ImageJ software shows that these µPADs can quantitative determine of hCG in the range from 5 to 10 000 ng/mL. Furthermore, duration for each tests is only about 5 min. The success in fabricating miniaturized µPADs shows the potentials to reduce the size of µPADs as well as the amount of needed samples, time and reagents. For all these reasons, this miniaturization concept can be applied to many further applications of analytical biochemical assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Martinez, A.W., Phillips, S.T., Butte, M.J., and Whitesides, G.M., Angew. Chem. Int. Ed., 2007, vol. 46, no. 8, pp. 1318–1320.

    Article  CAS  Google Scholar 

  2. Li, X., Tian, J., and Shen, W., Anal. Bioanal. Chem., 2010, vol. 396, no. 1, pp. 495–501.

    Article  CAS  Google Scholar 

  3. Apilux, A., Ukita, Y., Chikae, M., Chailapakul, O., and Takamura, Y., Lab Chip, 2013, vol. 13, pp. 126–135.

    Article  CAS  Google Scholar 

  4. Xu, C., Cai, L., Zhong, M., and Zheng, S., RSC Adv., 2015, vol. 5, pp. 4770–4773.

    Article  CAS  Google Scholar 

  5. Liang, L., Su, M., Li L., Lan, F., Yang, G., Ge, S., et al., Sens. Actuators B—Chem., 2016, vol. 229, pp. 347–354.

    Article  CAS  Google Scholar 

  6. Lim, W.Y., Goh, B.T., and Khor, S.M., J. Chromatogr. B, 2017, vol. 1060, pp. 424–442.

    Article  CAS  Google Scholar 

  7. Fu, L.M. and Wang, Y.N., Trends Anal. Chem., 2018, vol. 107, pp. 196–211.

    Article  CAS  Google Scholar 

  8. Liu, C., Gomez, F.A., Miao, Y., Cui, P., and Lee, W., Talanta, 2019, vol. 194, pp. 171–176.

    Article  CAS  Google Scholar 

  9. Liu, M.M., Lian, X., Liu, H., Guo, Z.Z., Huang, H.H., Lei, Y., et al., Talanta, 2019, vol. 200, pp. 511–517.

    Article  CAS  Google Scholar 

  10. Cate, D.M., Adkins, J.A., Mettakoonpitak, J., and Henry, C.S., Anal. Chem., 2015, vol. 87, no. 1, pp. 19–41.

    Article  CAS  Google Scholar 

  11. He, Y., Wu, W.B., and Fu, J.Z., RSC Adv., 2015, vol. 5, pp. 2694–2701.

    Article  CAS  Google Scholar 

  12. Xia, Y., Si, J., and Li, Z., Biosens. Bioelectron., 2016, vol. 77, pp. 774–789.

    Article  CAS  Google Scholar 

  13. He, Y., Gao, Q., Wu, W.B., Nie, J., and Fu, J.Z., Micromachines, 2016, vol. 7, no. 7, Article ID 108.

    Article  Google Scholar 

  14. Strong, E.B., Schultz, S.A., Martinez, A.W., and Martinez, N.W., Sci. Rep., 2019, vol. 9, Article ID 7.

    Article  Google Scholar 

  15. Yamada, K., Henares, T.G., Suzuki, K., and Citterio, D., Angew. Chem. Int. Ed., 2015, vol. 54, no. 18, pp. 5294–5310.

    Article  CAS  Google Scholar 

  16. Abe, K., Suzuki, K., and Citterio, D., Inkjet-printed microfluidic multianalyte chemical sensing paper, Anal. Chem., 2008, vol. 80, no. 18, pp. 6928–6934.

    Article  CAS  Google Scholar 

  17. Li, X., Tian, J., Garnier, G., and Shen, W., Colloids Surf. B Biointerfaces, 2010, vol. 76, pp. 564–570.

    Article  CAS  Google Scholar 

  18. Wang, J., Monton, M.R.N., Zhang, X., Filipe, C.D.M., Pelton, R., and Brennan J.D., Lab Chip, 2014, vol. 14, no. 4, pp. 691–695.

    Article  CAS  Google Scholar 

  19. Park, S., Kim, H., Paek, S.H., Hong, J.W., and Kim, J.K., Ultramicroscopy, 2008, vol. 108, pp. 1348–1351.

    Article  CAS  Google Scholar 

  20. Kim, Y.K. and Kim, H., J. Ind. Eng. Chem., 2009, vol. 15, pp. 229–232.

    Article  Google Scholar 

Download references

Funding

The authors would like to appreciate Ministry of Science and Technology of Vietnam for funding this research under the grant no. 03/2019/HĐ-SPĐP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Dang.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, N.N., Phan, H.C., Dang, D.M. et al. Fabrication of Miniaturized Microfluidic Paper-Based Analytical Devices for Sandwich Enzyme-Linked Immunosorbent Assays using INKJET Printing. Appl Biochem Microbiol 57, 257–261 (2021). https://doi.org/10.1134/S0003683821020071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821020071

Keywords:

Navigation