Skip to main content
Log in

Perspective of Using Gluconacetobacter sucrofermentas VKPM B-11267 in Biofuel Cells

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The bioelectrochemical and spectral properties of immobilized Gluconacetobacter sucrofermentas VKPM B-11267 bacteria were studied in the presence and absence of multiwalled carbon nanotubes (MWCNTs). The obtained characteristics were compared with the characteristics of Gluconobacter oxydans, which are phylogenetically close to them and are widely used in bioelectrochemistry. It was shown that modification of the bioelectrode with carbon nanotubes leads to a significant increase in the current level (by 2.5–3 times), as well as to a decrease in the total resistance both in the absence of substrates and in their presence. The potential use of immobilized G. sucrofermentas cells as part of a microbial fuel cell (MFC) was considered. The specific electrical power of an MFC based on immobilized G. sucrofermentas cells was lower than that of an MFC based on G. oxydans cells. Nevertheless, the results obtained indicate that G. sucrofermentas VKPM B-11267 cells can serve as a biocatalyst in MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Costa, A.F.S., Almeida, F.C.G., Vinhas, G.M., and Sarubbo, A.L., Front. Microbiol., 2017, vol. 8. https://doi.org/10.3389/fmicb.2017.02027

  2. RF Patent no. 2536973, 2013.

  3. RF Patent no. 2523606, 2013.

  4. Mohite, B.V. and Patil, S.V., Biotechnol. Appl. Biochem., 2014, vol. 61, no. 2, pp. 101–110.

    Article  CAS  Google Scholar 

  5. Nirmale, T.C., Kale, B.B., and Varma, A.J., Int. J. Biol. Macromol., 2017, vol. 103, pp. 1032–1043.

    Article  CAS  Google Scholar 

  6. Mashkour, M., Rahimnejad, M., Mashkour, M., and Soavi, F., J. Power Sources, 2020, vol. 478. https://doi.org/10.1016/j.jpowsour.2020.228822

  7. Lv, P., Feng, Q., Wang, Q., Li, D., Zhou, J., and Wei, Q., Fibers Polym., 2016, vol. 17, no. 11, pp. 1858–1865.

    Article  CAS  Google Scholar 

  8. Evans, B.R., O’Neill, H.M., Malyvanh, V.P., Lee, I., and Woodward, J., Biosens. Bioelectron., 2003, vol. 18, pp. 917–923.

    Article  CAS  Google Scholar 

  9. Yang, J., Sun, D., Li, J., Yang, X., Yu, J., Hao, Q., Liu, W., Liu, J., Zou, Z., and Gu, J., Electrochim. Acta, 2009, vol. 54, pp. 6300–6305.

    Article  CAS  Google Scholar 

  10. Costa, S.V., Goncalves, A.S., Zaguete, M.A., Mazon, T., and Nogueira, A.F., Chem. Commun., 2013, vol. 49, no. 73, p. 8096. https://doi.org/10.1039/c3cc43152e

    Article  CAS  Google Scholar 

  11. Gupta, A., Singh, V.K., Qazi, G.N., and Kumar, A., J. Mol. Microbiol. Biotechnol., 2001, vol. 3 I, pp. 445–456.

    CAS  PubMed  Google Scholar 

  12. Šefčovičová, J., Filip, J., and Tkac, J., Chem. Pap., vol. 69, pp. 176–182.

  13. Plekhanova, Y., Tarasov, S., Kolesov, V., Kuznetsova, I., Signore, M., Quaranta, F., and Reshetilov, A., Membranes, 2018, vol. 8, no. 4, p. 99. https://doi.org/10.3390/membranes8040099

    Article  CAS  PubMed Central  Google Scholar 

  14. Plekhanova, Y., Tarasov, S., Bykov, A., Prisyazhnaya, N., Kolesov, V., Sigaev, V., Signore, M.A., and Reshetilov, A., Biosensors, 2019, vol. 9, no. 4, p. 137. https://doi.org/10.3390/bios9040137

    Article  CAS  PubMed Central  Google Scholar 

  15. Macauley, S., McNeil, B., and Harvey, L.M., Crit. Rev. Biotechnol., 2001, vol. 21, no. 1, pp. 1–25.

    Article  CAS  Google Scholar 

  16. Bykov, A.G., Skripacheva, O.V., Tarasov, S.E., Klenova, N.A., and Reshetilov, A.N., Izv. Tul’sk. Gos. Univ., Ser. Estestv. Nauki, 2020, no. 1, pp. 17–25.

  17. Tarasov, C.E., Plekhanova, Yu.V., Bykov, A.E., Klenova, N.A., and Reshetilov, A.N., Ross. Nanotekhnol., 2020, vol. 15, no. 1, pp. 86–89.

    Google Scholar 

  18. Maksimova, Yu.G., Appl. Biochem. Microbiol., 2019, vol. 55, no. 1, pp. 1–12.

    Article  CAS  Google Scholar 

  19. Reshetilov, A.N., Plekhanova, Yu.V., Tarasov, S.E., Arlyapov, V.A., Kolesov, V.V., Gutorov, M.A., Gotovtsev, P.M., and Vasilov, R.G., Appl. Biochem. Microbiol., 2017, vol. 53, no. 1, pp. 123–129.

    Article  CAS  Google Scholar 

  20. Wang, X., Gu, H., Yin, F., and Tu, Y., Biosens. Bioelectron., 2009, vol. 24, no. 5, pp. 1527–1530.

    Article  CAS  Google Scholar 

  21. Reshetilov, A.N., Iliasov, P.V., Fesay, A.P., Ivashchenko, G.V., Taranova, L.A., Winther-Nielsen, M., and Emneus, J., Appl. Biochem. Microbiol., 2005, vol. 41, no. 1, pp. 56–62.

    Article  CAS  Google Scholar 

  22. Sievers, M. and Swings, J., in The Genus Gluconobacter, Garrity, G.M., Brenner, D.J., Krieg, N.R., and Staley, J.T., Eds., New York: Springer, 2005, pp. 77–81.

    Google Scholar 

  23. RF Patent, no. 108217, 2011.

  24. RF Patent no. 109758, 2011.

  25. Alferov, S.V., Minaicheva, P.R., Arlyapov, V.A., Asulyan, L.D., Alferov, V.A., Ponamoreva, O.N., and Reshetilov, A.N., Appl. Biochem. Microbiol., 2014, vol. 50, no. 6, pp. 637–643.

    Article  CAS  Google Scholar 

  26. Alferov, S.V., Arlyapov, V.A., Alferov, V.A., and Reshetilov, A.N., Appl. Biochem. Microbiol., 2018, vol. 54, no. 6, pp. 689–694.

    Article  CAS  Google Scholar 

  27. Karthikeyan, R., Krishnaraj, N., Selvam, A., Wong, J.W.-C., Lee, P.K.H., Leung, M.K.H., and Berchmans, S., Bioresour. Technol., 2016, vol. 217, pp. 113–120.

    Article  CAS  Google Scholar 

  28. Permana, D., Rosdianti, D., Ishmayana, S., Rachman, S.D., Putra, H.E., Rahayuningwulan, D., and Hariyadi, H.R., Procedia Chem., 2015, vol. 17, pp. 36–43.

    Article  CAS  Google Scholar 

  29. Hou, L., Yang, Q., and Li, J., Biotechnol. Bioprocess Eng., 2020, vol. 25, no. 3, pp. 470–476.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Doctor of Biology, Professor O.N. Klenova (S.P. Korolev Samara National Research University) for their help in getting the G. sucrofermentas B-11267 strain.

Funding

Studies of the spectral characteristics of bacterial cells were supported by Russian Foundation for Basic Research and the Department of Science and Technology (project no. 19-58-45011). The electrochemical characteristics of the MFC models were supported by the Russian Foundation for Basic Research (project no. 18-29-23024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Reshetilov.

Ethics declarations

The authors state that there is no conflict of interest. This article does not contain any studies with the use of animals or humans as objects of research.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, S.E., Plekhanova, Y.V., Bykov, A.G. et al. Perspective of Using Gluconacetobacter sucrofermentas VKPM B-11267 in Biofuel Cells. Appl Biochem Microbiol 57, 262–270 (2021). https://doi.org/10.1134/S0003683821020150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821020150

Keywords:

Navigation