Skip to main content
Log in

Inpatient Diuretic Management of Acute Heart Failure: A Practical Review

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

The inpatient treatment of acute heart failure (AHF) is aimed at achieving euvolemia, relieving symptoms, and reducing rehospitalization. Adequate treatment of AHF is rooted in understanding the pharmacokinetics and pharmacodynamics of select diuretic agents used to achieve decongestion. While loop diuretics remain the primary treatment of AHF, the dosing strategies of loop diuretics and the use of adjunct diuretic classes to augment clinical response can be complex. This review examines the latest strategies for diuretic management in patients with AHF, including dosing and monitoring strategies, interaction of diuretics with other medication classes, use adjunctive therapies, and assessing endpoints for diuretic. The goal of the review is to guide the reader through commonly encountered clinical scenarios and pitfalls in the diuretic management of patients with AHF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239. https://doi.org/10.1016/j.jacc.2013.05.019.

    Article  PubMed  Google Scholar 

  2. Peacock WF, Costanzo MR, De Marco T, et al. Impact of intravenous loop diuretics on outcomes of patients hospitalized with acute decompensated heart failure: insights from the ADHERE registry. Cardiology. 2009;113(1):12–9. https://doi.org/10.1159/000164149.

    Article  PubMed  Google Scholar 

  3. Casu G, Merella P. Diuretic therapy in heart failure—current approaches. Eur Cardiol. 2015;10(1):42–7. https://doi.org/10.15420/ecr.2015.10.01.42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wile D. Diuretics: a review. Ann Clin Biochem. 2012;49(Pt 5):419–31. https://doi.org/10.1258/acb.2011.011281.

    Article  CAS  PubMed  Google Scholar 

  5. Francis GS, Siegel RM, Goldsmith SR, Olivari MT, Levine TB, Cohn JN. Acute vasoconstrictor response to intravenous furosemide in patients with chronic congestive heart failure. Activation of the neurohumoral axis. Ann Intern Med. 1985;103(1):1–6. https://doi.org/10.7326/0003-4819-103-1-1.

  6. Singh P, Okusa MD. The role of tubuloglomerular feedback in the pathogenesis of acute kidney injury. Contrib Nephrol. 2011;174:12–21. https://doi.org/10.1159/000329229.

    Article  PubMed  Google Scholar 

  7. Sambandam KK. Effective use of loop diuretics in heart failure exacerbation: a nephrologist’s view. Am J Med Sci. 2014;347(2):139–45. https://doi.org/10.1097/MAJ.0b013e31828a2962.

    Article  PubMed  Google Scholar 

  8. Ellison DH. Clinical Pharmacology in Diuretic Use [published correction appears in Clin J Am Soc Nephrol. 2019 Nov;14(11):1653-1654]. Clin J Am Soc Nephrol. 2019;14(8):1248–1257. https://doi.org/10.2215/cjn.09630818.

  9. Beermann B, Grind M. Clinical pharmacokinetics of some newer diuretics. Clin Pharmacokinet. 1987;13(4):254–66. https://doi.org/10.2165/00003088-198713040-00003.

    Article  CAS  PubMed  Google Scholar 

  10. Carone L, Oxberry SG, Twycross R, Charlesworth S, Mihalyo M, Wilcock A. Furosemide. J Pain Symptom Manage. 2016;52(1):144–50. https://doi.org/10.1016/j.jpainsymman.2016.05.004.

    Article  PubMed  Google Scholar 

  11. Hammarlund MM, Paalzow LK, Odlind B. Pharmacokinetics of furosemide in man after intravenous and oral administration. Application of moment analysis. Eur J Clin Pharmacol. 1984;26(2):197–207. https://doi.org/10.1007/bf00630286.

  12. Brater DC. Diuretic therapy. N Engl J Med. 1998;339(6):387–95. https://doi.org/10.1056/NEJM199808063390607.

    Article  CAS  PubMed  Google Scholar 

  13. Sunkara B, Dorsch M, Nicklar J, Nicklas J M. Voluminous responses to loop diuretics are safe in patients with acute decompensated heart failure and chronic kidney disease. Circulation. In: Proceedings from AHA Scientific Sessions 2018. 2018. Abstract 16500.

  14. Baldwin KA, Budzinski CE, Shapiro CJ. Acute sensorineural hearing loss: furosemide ototoxicity revisited. Hosp Pharm. 2008;43(12):982–8. https://doi.org/10.1310/hpj4312-982.

    Article  Google Scholar 

  15. Bumetanide. AHFS Drug Information 2010. AHFS Clinical Drug Information. Bethesda, MD: American Society of Health-System Pharmacists, Inc. Updated January 2009.

  16. Wargo KA, Banta WM. A comprehensive review of the loop diuretics: should furosemide be first line? Ann Pharmacother. 2009;43(11):1836–47. https://doi.org/10.1345/aph.1M177.

    Article  CAS  PubMed  Google Scholar 

  17. DiNicolantonio JJ. Should torsemide be the loop diuretic of choice in systolic heart failure? Future Cardiol. 2012;8(5):707–28. https://doi.org/10.2217/fca.12.54.

    Article  CAS  PubMed  Google Scholar 

  18. Murray MD, Deer MM, Ferguson JA, et al. Open-label randomized trial of torsemide compared with furosemide therapy for patients with heart failure. Am J Med. 2001;111(7):513–20. https://doi.org/10.1016/s0002-9343(01)00903-2.

    Article  CAS  PubMed  Google Scholar 

  19. Cosín J, Díez J; TORIC investigators. Torsemide in chronic heart failure: results of the TORIC study [published correction appears in Eur J Heart Fail 2002 Oct;4(5):667]. Eur J Heart Fail. 2002;4(4):507–513. https://doi.org/10.1016/s1388-9842(02)00122-8.

  20. Testani JM, Brisco MA, Turner JM, et al. Loop diuretic efficiency: a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail. 2014;7(2):261–70. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000895.

    Article  CAS  PubMed  Google Scholar 

  21. Vasko MR, Cartwright DB, Knochel JP, Nixon JV, Brater DC. Furosemide absorption altered in decompensated congestive heart failure. Ann Intern Med. 1985;102(3):314–8. https://doi.org/10.7326/0003-4819-102-3-314.

    Article  CAS  PubMed  Google Scholar 

  22. Berkowtiz D, Croll MN, Likoff W. Malabsorption as a complication of congestive heart failure. Am J Cardiol. 1963;11:43–7. https://doi.org/10.1016/0002-9149(63)90029-8.

    Article  Google Scholar 

  23. Felker GM, Lee KL, Bull DA, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364(9):797–805. https://doi.org/10.1056/NEJMoa1005419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mullens W, Damman K, Harjola VP, et al. The use of diuretics in heart failure with congestion—a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21(2):137–55. https://doi.org/10.1002/ejhf.1369.

    Article  PubMed  Google Scholar 

  25. Verbrugge FH. Utility of urine biomarkers and electrolytes for the management of heart failure. Curr Heart Fail Rep. 2019;16(6):240–9. https://doi.org/10.1007/s11897-019-00444-z.

    Article  CAS  PubMed  Google Scholar 

  26. Palazzuoli A, Pellegrini M, Ruocco G, et al. Continuous versus bolus intermittent loop diuretic infusion in acutely decompensated heart failure: a prospective randomized trial. Crit Care. 2014;18(3):R134. https://doi.org/10.1186/cc13952.

  27. Ng KT, Velayit A, Khoo DKY, Mohd Ismail A, Mansor M. Continuous infusion versus intermittent bolus injection of furosemide in critically ill patients: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2018;32(5):2303–10. https://doi.org/10.1053/j.jvca.2018.01.004.

    Article  CAS  PubMed  Google Scholar 

  28. Verbrugge FH, Tang WH, Mullens W. Renin-Angiotensin-aldosterone system activation during decongestion in acute heart failure: friend or foe? JACC Heart Fail. 2015;3(2):108–11. https://doi.org/10.1016/j.jchf.2014.10.005.

    Article  PubMed  Google Scholar 

  29. Mentz RJ, Stevens SR, DeVore AD, et al. Decongestion strategies and renin-angiotensin-aldosterone system activation in acute heart failure. JACC Heart Fail. 2015;3(2):97–107. https://doi.org/10.1016/j.jchf.2014.09.003.

    Article  PubMed  Google Scholar 

  30. Frea S, Pidello S, Volpe A, et al. Diuretic treatment in high-risk acute decompensation of advanced chronic heart failure-bolus intermittent vs. continuous infusion of furosemide: a randomized controlled trial. Clin Res Cardiol. 2020;109(4):417–425. https://doi.org/10.1007/s00392-019-01521-y.

  31. Jenkins PG. Diuretic strategies in patients with acute heart failure. N Engl J Med. 2011;364(21):2066–9. https://doi.org/10.1056/NEJMc1103708.

    Article  CAS  PubMed  Google Scholar 

  32. Abi Khalil C, Al Suwaidi J, Singh R, et al. Beta-blockers are associated with decreased in-hospital mortality and stroke in acute decompensated heart failure: findings from a retrospective analysis of a 22-year registry in the middle east (1991–2013). Curr Vasc Pharmacol. 2017;15(1):77–83. https://doi.org/10.2174/1570161114666160822155440.

    Article  CAS  PubMed  Google Scholar 

  33. Jondeau G, Neuder Y, Eicher JC, et al. B-CONVINCED: Beta-blocker CONtinuation Vs. INterruption in patients with Congestive heart failure hospitalizED for a decompensation episode. Eur Heart J. 2009;30(18):2186-2192. https://doi.org/10.1093/eurheartj/ehp323.

  34. Darden D, Drazner MH, Mullens W, Dupont M, Tang WHW, Grodin JL. Implications of renin-angiotensin-system blocker discontinuation in acute decompensated heart failure with systolic dysfunction. Clin Cardiol. 2019;42(10):1010–8. https://doi.org/10.1002/clc.23260.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Beusekamp JC, Tromp J, Cleland JGF, et al. Hyperkalemia and treatment with RAAS inhibitors during acute heart failure hospitalizations and their association with mortality. JACC Heart Fail. 2019;7(11):970–9. https://doi.org/10.1016/j.jchf.2019.07.010.

    Article  PubMed  Google Scholar 

  36. Fonarow GC, Abraham WT, Albert NM, et al. Influence of beta-blocker continuation or withdrawal on outcomes in patients hospitalized with heart failure: findings from the OPTIMIZE-HF program. J Am Coll Cardiol. 2008;52(3):190–9. https://doi.org/10.1016/j.jacc.2008.03.048.

    Article  CAS  PubMed  Google Scholar 

  37. Butler J, Young JB, Abraham WT, et al. Beta-blocker use and outcomes among hospitalized heart failure patients. J Am Coll Cardiol. 2006;47(12):2462–9. https://doi.org/10.1016/j.jacc.2006.03.030.

    Article  CAS  PubMed  Google Scholar 

  38. Testani JM, Brisco MA, Kociol RD, et al. Substantial discrepancy between fluid and weight loss during acute decompensated heart failure treatment. Am J Med. 2015;128(7):776–783.e4. https://doi.org/10.1016/j.amjmed.2014.12.020.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vazir A, Cowie MR. Decongestion: diuretics and other therapies for hospitalized heart failure. Indian Heart J. 2016;68 Suppl 1(Suppl 1):S61–S68. https://doi.org/10.1016/j.ihj.2015.10.386.

  40. Testani JM, Hanberg JS, Cheng S, et al. Rapid and highly accurate prediction of poor loop diuretic natriuretic response in patients with heart failure. Circ Heart Fail. 2016;9(1):e002370. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luk A, Groarke JD, Desai AS, et al. First spot urine sodium after initial diuretic identifies patients at high risk for adverse outcome after heart failure hospitalization. Am Heart J. 2018;203:95–100. https://doi.org/10.1016/j.ahj.2018.01.013.

    Article  CAS  PubMed  Google Scholar 

  42. Hodson DZ, Griffin M, Mahoney D, et al. Natriuretic response is highly variable and associated with 6-month survival: insights from the ROSE-AHF trial. JACC Heart Fail. 2019;7(5):383–91. https://doi.org/10.1016/j.jchf.2019.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Singh D, Shrestha K, Testani JM, et al. Insufficient natriuretic response to continuous intravenous furosemide is associated with poor long-term outcomes in acute decompensated heart failure. J Card Fail. 2014;20(6):392–9. https://doi.org/10.1016/j.cardfail.2014.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Verbrugge FH, Dupont M, Bertrand PB, et al. Determinants and impact of the natriuretic response to diuretic therapy in heart failure with reduced ejection fraction and volume overload. Acta Cardiol. 2015;70(3):265–73. https://doi.org/10.1080/ac.70.3.3080630.

    Article  PubMed  Google Scholar 

  45. Roush GC, Kaur R, Ernst ME. Diuretics: a review and update. J Cardiovasc Pharmacol Ther. 2014;19(1):5–13. https://doi.org/10.1177/1074248413497257.

    Article  CAS  PubMed  Google Scholar 

  46. Li X, Wang R, Liu Y, et al. Pharmacokinetic study of single- and multiple-dosing with metolazone tablets in healthy Chinese population. BMC Pharmacol Toxicol. 2017;18(1):73. https://doi.org/10.1186/s40360-017-0178-x.

  47. Colussi D, Schoeller JP, Richard A, Sioufi A. Pharmacokinetics of chlorthalidone in the elderly after single and multiple doses. Br J Clin Pharmacol. 1983;16(6):755–6. https://doi.org/10.1111/j.1365-2125.1983.tb02259.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jentzer JC, DeWald TA, Hernandez AF. Combination of loop diuretics with thiazide-type diuretics in heart failure. J Am Coll Cardiol. 2010;56(19):1527–34. https://doi.org/10.1016/j.jacc.2010.06.034.

    Article  CAS  PubMed  Google Scholar 

  49. Sica DA. Metolazone and its role in edema management. Congest Heart Fail. 2003;9(2):100–5. https://doi.org/10.1111/j.1527-5299.2003.01907.x.

    Article  CAS  PubMed  Google Scholar 

  50. Brisco-Bacik MA, Ter Maaten JM, Houser SR, et al. Outcomes associated with a strategy of adjuvant metolazone or high-dose loop diuretics in acute decompensated heart failure: a propensity analysis. J Am Heart Assoc. 2018;7(18):e009149. https://doi.org/10.1161/JAHA.118.009149.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Verbrugge FH, Martens P, Ameloot K, et al. Spironolactone to increase natriuresis in congestive heart failure with cardiorenal syndrome. Acta Cardiol. 2019;74(2):100–7. https://doi.org/10.1080/00015385.2018.1455947.

    Article  PubMed  Google Scholar 

  52. Butler J, Anstrom KJ, Felker GM, et al. Efficacy and safety of spironolactone in acute heart failure: the ATHENA-HF randomized clinical trial. JAMA Cardiol. 2017;2(9):950–8. https://doi.org/10.1001/jamacardio.2017.2198.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hampson AJ, Babalonis S, Lofwall MR, Nuzzo PA, Krieter P, Walsh SL. A pharmacokinetic study examining acetazolamide as a novel adherence marker for clinical trials. J Clin Psychopharmacol. 2016;36(4):324–32. https://doi.org/10.1097/JCP.0000000000000529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Imiela T, Budaj A. Acetazolamide as add-on diuretic therapy in exacerbations of chronic heart failure: a pilot study. Clin Drug Investig. 2017;37(12):1175–81. https://doi.org/10.1007/s40261-017-0577-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Verbrugge FH, Martens P, Ameloot K, et al. Acetazolamide to increase natriuresis in congestive heart failure at high risk for diuretic resistance. Eur J Heart Fail. 2019;21(11):1415–22. https://doi.org/10.1002/ejhf.1478.

    Article  CAS  PubMed  Google Scholar 

  56. Wongboonsin J, Thongprayoon C, Bathini T, et al. Acetazolamide therapy in patients with heart failure: a meta-analysis. J Clin Med. 2019;8(3):349. https://doi.org/10.3390/jcm8030349.

  57. Carbonic Anhydrase Inhibitors General Statement. AHFS Drug Information 2010. AHFS Clinical Drug Information. Bethesda, MD: American Society of Health-System Pharmacists, Inc. Updated January 2009.

  58. Mullens W, Verbrugge FH, Nijst P, et al. Rationale and design of the ADVOR (Acetazolamide in Decompensated Heart Failure with Volume Overload) trial. Eur J Heart Fail. 2018;20(11):1591–600. https://doi.org/10.1002/ejhf.1307.

    Article  CAS  PubMed  Google Scholar 

  59. Felker GM, Mentz RJ, Cole RT, et al. Efficacy and safety of tolvaptan in patients hospitalized with acute heart failure. J Am Coll Cardiol. 2017;69(11):1399–406. https://doi.org/10.1016/j.jacc.2016.09.004.

    Article  CAS  PubMed  Google Scholar 

  60. Cox ZL, Hung R, Lenihan DJ, Testani JM. Diuretic strategies for loop diuretic resistance in acute heart failure: the 3T trial. JACC Heart Fail. 2020;8(3):157–68. https://doi.org/10.1016/j.jchf.2019.09.012.

    Article  PubMed  Google Scholar 

  61. Konstam MA, Gheorghiade M, Burnett JC Jr, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297(12):1319–31. https://doi.org/10.1001/jama.297.12.1319.

    Article  CAS  PubMed  Google Scholar 

  62. Ansary TM, Nakano D, Nishiyama A. Diuretic effects of sodium glucose cotransporter 2 inhibitors and their influence on the renin-angiotensin system. Int J Mol Sci. 2019;20(3):629. https://doi.org/10.3390/ijms20030629.

  63. Sha S, Polidori D, Heise T, et al. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2014;16(11):1087–95. https://doi.org/10.1111/dom.12322.

    Article  CAS  PubMed  Google Scholar 

  64. Ohara K, Masuda T, Murakami T, et al. Effects of the sodium-glucose cotransporter 2 inhibitor dapagliflozin on fluid distribution: a comparison study with furosemide and tolvaptan. Nephrology (Carlton). 2019;24(9):904–11. https://doi.org/10.1111/nep.13552.

    Article  CAS  PubMed  Google Scholar 

  65. Wilcox CS, Shen W, Boulton DW, Leslie BR, Griffen SC. Interaction between the sodium-glucose-linked transporter 2 inhibitor dapagliflozin and the loop diuretic bumetanide in normal human subjects. J Am Heart Assoc. 2018;7(4):e007046. https://doi.org/10.1161/jaha.117.007046.

  66. Griffin M, Rao VS, Ivey-Miranda J, et al. Empagliflozin in Heart Failure: Diuretic and Cardio-Renal Effects [published online ahead of print, 2020 May 15]. Circulation. 2020;https://doi.org/10.1161/circulationaha.120.045691.

  67. Damman K, Beusekamp JC, Boorsma EM, et al. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur J Heart Fail. 2020;22(4):713–22. https://doi.org/10.1002/ejhf.1713.

    Article  CAS  PubMed  Google Scholar 

  68. Lindenfield J, Cox Z, Collins S. (2020). [Clinical trial investigating the Efficacy and Safety of Dapagliflozin in Acute Heart Failure- DICTATE-AHF]. NCT04298229.

  69. Lehrke M, Marx N. (2019). [Clinical trial EMPA Acute Heart Failure]. NCT03554200.

  70. Elkayam U, Ng TM, Hatamizadeh P, Janmohamed M, Mehra A. Renal vasodilatory action of dopamine in patients with heart failure: magnitude of effect and site of action. Circulation. 2008;117(2):200–5. https://doi.org/10.1161/CIRCULATIONAHA.107.737106.

    Article  CAS  PubMed  Google Scholar 

  71. Giamouzis G, Butler J, Starling RC, et al. Impact of dopamine infusion on renal function in hospitalized heart failure patients: results of the Dopamine in Acute Decompensated Heart Failure (DAD-HF) Trial. J Card Fail. 2010;16(12):922–30. https://doi.org/10.1016/j.cardfail.2010.07.246.

    Article  CAS  PubMed  Google Scholar 

  72. Triposkiadis FK, Butler J, Karayannis G, et al. Efficacy and safety of high dose versus low dose furosemide with or without dopamine infusion: the Dopamine in Acute Decompensated Heart Failure II (DAD-HF II) trial. Int J Cardiol. 2014;172(1):115–21. https://doi.org/10.1016/j.ijcard.2013.12.276.

    Article  PubMed  Google Scholar 

  73. Chen HH, Anstrom KJ, Givertz MM, et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA. 2013;310(23):2533–43. https://doi.org/10.1001/jama.2013.282190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wan SH, Stevens SR, Borlaug BA, et al. Differential response to low-dose dopamine or low-dose nesiritide in acute heart failure with reduced or preserved ejection fraction: results from the ROSE AHF trial (renal optimization strategies evaluation in acute heart failure). Circ Heart Fail. 2016;9(8):e002593. https://doi.org/10.1161/circheartfailure.115.002593.

  75. Rajfer SI, Borow KM, Lang RM, Neumann A, Carroll JD. Effects of dopamine on left ventricular afterload and contractile state in heart failure: relation to the activation of beta 1-adrenoceptors and dopamine receptors. J Am Coll Cardiol. 1988;12(2):498–506. https://doi.org/10.1016/0735-1097(88)90426-3.

    Article  CAS  PubMed  Google Scholar 

  76. Licata G, Di Pasquale P, Parrinello G, et al. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: long-term effects. Am Heart J. 2003;145(3):459–66. https://doi.org/10.1067/mhj.2003.166.

    Article  CAS  PubMed  Google Scholar 

  77. Paterna S, Di Pasquale P, Parrinello G, et al. Changes in brain natriuretic peptide levels and bioelectrical impedance measurements after treatment with high-dose furosemide and hypertonic saline solution versus high-dose furosemide alone in refractory congestive heart failure: a double-blind study. J Am Coll Cardiol. 2005;45(12):1997–2003. https://doi.org/10.1016/j.jacc.2005.01.059.

    Article  CAS  PubMed  Google Scholar 

  78. Paterna S, Fasullo S, Parrinello G, et al. Short-term effects of hypertonic saline solution in acute heart failure and long-term effects of a moderate sodium restriction in patients with compensated heart failure with New York Heart Association class III (Class C) (SMAC-HF Study). Am J Med Sci. 2011;342(1):27–37. https://doi.org/10.1097/MAJ.0b013e31820f10ad.

    Article  PubMed  Google Scholar 

  79. Kitsios GD, Mascari P, Ettunsi R, Gray AW. Co-administration of furosemide with albumin for overcoming diuretic resistance in patients with hypoalbuminemia: a meta-analysis. J Crit Care. 2014;29(2):253–9. https://doi.org/10.1016/j.jcrc.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  80. Oczkowski SJW, Klotz L, Mazzetti I, et al. Furosemide and Albumin for Diuresis of Edema (FADE): a parallel-group, blinded, pilot randomized controlled trial. J Crit Care. 2018;48:462–7. https://doi.org/10.1016/j.jcrc.2018.07.020.

    Article  CAS  PubMed  Google Scholar 

  81. Mahmoodpoor A, Zahedi S, Pourakbar A, et al. Efficacy of furosemide-albumin compared with furosemide in critically ill hypoalbuminemia patients admitted to intensive care unit: a prospective randomized clinical trial. Daru. 2020;28(1):263–9. https://doi.org/10.1007/s40199-020-00339-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu C, Chen Y, Kang Y, Ni Z, Xiu H, Guan J, Liu K. Glucocorticoids improve renal responsiveness to atrial natriuretic peptide by up-regulating natriuretic peptide receptor-A expression in the renal inner medullary collecting duct in decompensated heart failure. J Pharmacol Exp Ther. 2011;339(1):203–9. https://doi.org/10.1124/jpet.111.184796Epub 2011 Jul 7 PMID: 21737535.

    Article  CAS  PubMed  Google Scholar 

  83. Liu C, Liu K. Effects of glucocorticoids in potentiating diuresis in heart failure patients with diuretic resistance. J Card Fail. 2014;20(9):625–9. https://doi.org/10.1016/j.cardfail.2014.06.353Epub 2014 Jun 23 PMID: 24969700.

    Article  CAS  PubMed  Google Scholar 

  84. Bart BA, Goldsmith SR, Lee KL, Givertz MM, O’Connor CM, Bull DA, Redfield MM, Deswal A, Rouleau JL, LeWinter MM, Ofili EO, Stevenson LW, Semigran MJ, Felker GM, Chen HH, Hernandez AF, Anstrom KJ, McNulty SE, Velazquez EJ, Ibarra JC, Mascette AM, Braunwald E; Heart Failure Clinical Research Network. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367(24):2296–304. https://doi.org/10.1056/nejmoa1210357(Epub 2012 Nov 6).

  85. Kabach M, Alkhawam H, Shah S, Joseph G, Donath EM, Moss N, Rosenstein RS, Chait R. Ultrafiltration versus intravenous loop diuretics in patients with acute decompensated heart failure: a meta-analysis of clinical trials. Acta Cardiol. 2017;72(2):132–41. https://doi.org/10.1080/00015385.2017.1291195(Epub 2017 Feb 28).

    Article  PubMed  Google Scholar 

  86. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC [published correction appears in Eur Heart J. 2016 Dec 30;:]. Eur Heart J. 2016;37(27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128.

  87. Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014;371(1):58–66. https://doi.org/10.1056/NEJMra1214243.

    Article  CAS  PubMed  Google Scholar 

  88. Damman K, Valente MA, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35(7):455–69. https://doi.org/10.1093/eurheartj/eht386.

    Article  PubMed  Google Scholar 

  89. Ahmad T, Jackson K, Rao VS, et al. Worsening Renal Function in Patients With Acute Heart Failure Undergoing Aggressive Diuresis Is Not Associated With Tubular Injury [published correction appears in Circulation. 2018 Jun 19;137(25):e853]. Circulation. 2018;137(19):2016–2028. https://doi.org/10.1161/circulationaha.117.030112.

  90. Rao VS, Ahmad T, Brisco-Bacik MA, et al. Renal effects of intensive volume removal in heart failure patients with preexisting worsening renal function. Circ Heart Fail. 2019;12(6):e005552. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Metra M, Davison B, Bettari L, et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail. 2012;5(1):54–62. https://doi.org/10.1161/CIRCHEARTFAILURE.111.963413.

    Article  PubMed  Google Scholar 

  92. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261(6):884–8.

    Article  CAS  Google Scholar 

  93. Gheorghiade M, Follath F, Ponikowski P, et al. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail. 2010;12(5):423–33. https://doi.org/10.1093/eurjhf/hfq045.

    Article  PubMed  Google Scholar 

  94. Vaduganathan M, Greene SJ, Fonarow GC, Voors AA, Butler J, Gheorghiade M. Hemoconcentration-guided diuresis in heart failure. Am J Med. 2014;127(12):1154–9. https://doi.org/10.1016/j.amjmed.2014.06.009.

    Article  PubMed  Google Scholar 

  95. Coiro S, Rossignol P, Ambrosio G, et al. Prognostic value of residual pulmonary congestion at discharge assessed by lung ultrasound imaging in heart failure. Eur J Heart Fail. 2015;17(11):1172–81. https://doi.org/10.1002/ejhf.344.

    Article  PubMed  Google Scholar 

  96. Adrogue HJ, Roehr EE, Roncoroni AJ. Contraction alkalosis during recovery of cardio-respiratory failure. Medicina (B Aires). 1974;34(2):133–8.

    CAS  PubMed  Google Scholar 

  97. Grodin JL, Carter S, Bart BA, Goldsmith SR, Drazner MH, Tang WHW. Direct comparison of ultrafiltration to pharmacological decongestion in heart failure: a per-protocol analysis of CARRESS-HF. Eur J Heart Fail. 2018;20(7):1148–56. https://doi.org/10.1002/ejhf.1158.

    Article  CAS  PubMed  Google Scholar 

  98. Rosen RA, Julian BA, Dubovsky EV, Galla JH, Luke RG. On the mechanism by which chloride corrects metabolic alkalosis in man. Am J Med. 1988;84(3 Pt 1):449–58. https://doi.org/10.1016/0002-9343(88)90265-3.

    Article  CAS  PubMed  Google Scholar 

  99. Van der Meer P, Postmus D, Ponikowski P, et al. The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. J Am Coll Cardiol. 2013;61(19):1973–1981. https://doi.org/10.1016/j.jacc.2012.12.050.

  100. Greene SJ, Gheorghiade M, Vaduganathan M, et al. Haemoconcentration, renal function, and post-discharge outcomes among patients hospitalized for heart failure with reduced ejection fraction: insights from the EVEREST trial. Eur J Heart Fail. 2013;15(12):1401–11. https://doi.org/10.1093/eurjhf/hft110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McCallum W, Tighiouart H, Testani JM, et al. Acute kidney function declines in the context of decongestion in acute decompensated heart failure. JACC Heart Fail. 2020;8(7):537–47. https://doi.org/10.1016/j.jchf.2020.03.009.

    Article  PubMed  Google Scholar 

  102. Testani JM, Brisco MA, Chen J, McCauley BD, Parikh CR, Tang WH. Timing of hemoconcentration during treatment of acute decompensated heart failure and subsequent survival: importance of sustained decongestion. J Am Coll Cardiol. 2013;62(6):516–24. https://doi.org/10.1016/j.jacc.2013.05.027.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ritzema JL, Richards AM, Crozier IG, et al. Serial Doppler echocardiography and tissue Doppler imaging in the detection of elevated directly measured left atrial pressure in ambulant subjects with chronic heart failure. JACC Cardiovasc Imaging. 2011;4(9):927–34. https://doi.org/10.1016/j.jcmg.2011.07.004.

    Article  PubMed  Google Scholar 

  104. Porter TR, Shillcutt SK, Adams MS, et al. Guidelines for the use of echocardiography as a monitor for therapeutic intervention in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28(1):40–56. https://doi.org/10.1016/j.echo.2014.09.009.

    Article  PubMed  Google Scholar 

  105. Jambrik Z, Monti S, Coppola V, et al. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol. 2004;93(10):1265–70. https://doi.org/10.1016/j.amjcard.2004.02.012.

    Article  PubMed  Google Scholar 

  106. Price S, Platz E, Cullen L, et al. Expert consensus document: echocardiography and lung ultrasonography for the assessment and management of acute heart failure. Nat Rev Cardiol. 2017;14(7):427–40. https://doi.org/10.1038/nrcardio.2017.56.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Simon MA, Schnatz RG, Romeo JD, Pacella JJ. Bedside ultrasound assessment of jugular venous compliance as a potential point-of-care method to predict acute decompensated heart failure 30-day readmission. J Am Heart Assoc. 2018;7(15):e008184. https://doi.org/10.1161/JAHA.117.008184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Öhman J, Harjola VP, Karjalainen P, Lassus J. Focused echocardiography and lung ultrasound protocol for guiding treatment in acute heart failure. ESC Heart Fail. 2018;5(1):120–8. https://doi.org/10.1002/ehf2.12208.

    Article  PubMed  Google Scholar 

  109. Kimura BJ, Demaria AN. Empowering physical examination: the “laying on” of ultrasound. JACC Cardiovasc Imaging. 2008;1(5):602–4. https://doi.org/10.1016/j.jcmg.2008.06.004.

    Article  PubMed  Google Scholar 

  110. Rivas-Lasarte M, Maestro A, Fernández-Martínez J, et al. Prevalence and prognostic impact of subclinical pulmonary congestion at discharge in patients with acute heart failure [published online ahead of print, 2020 Jul 7]. ESC Heart Fail. 2020. https://doi.org/10.1002/ehf2.12842.

  111. Fridman D, Cohen A, Robinson G et al. Point of care lung ultrasound predicts heart failure readmissions. Circulation: heart failure and cardiomyopathies. In: Proceedings from AHA Scientific Sessions 2019. Nov 11, 2019. Abstract 11609.

  112. Olarte N, Jacobs M, Vincent L et al. A trial of pre-discharge point of care ultrasound for acute decompensated heart failure. Circulation: cardiovascular quality and outcomes. In: Proceedings from AHA Quality of Care and Outcomes Research (QCOR) 2020 Scientific Sessions; May 15, 2020. Abstract 346.

  113. Huston JH, Ferre R, Pang PS, Chioncel O, Butler J, Collins S. Optimal endpoints of acute heart failure therapy. Am J Ther. 2018;25(4):e465–74. https://doi.org/10.1097/MJT.0000000000000792.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Laliberte B, Reed BN, Devabhakthuni S, et al. Observation of patients transitioned to an oral loop diuretic before discharge and risk of readmission for acute decompensated heart failure. J Card Fail. 2017;23(10):746–52. https://doi.org/10.1016/j.cardfail.2017.06.008.

    Article  CAS  PubMed  Google Scholar 

  115. Schale S, Brambatti M, Hansen P et al. Transitioning patients to oral diuretics 24 hours before discharge from heart failure hospitalization does not improve 30 day outcomes. J Card Fail. In: Proceedings from the Heart Failure Society of America; Sep 13–16, 2019; Philadelphia, PA. Abstract 160.

  116. Woodruff AE, Kelley AM, Hempel CA, Loeffler WJ, Echtenkamp CA, Hassan AK. Discharge diuretic dose and 30-day readmission rate in acute decompensated heart failure. Ann Pharmacother. 2016;50(6):437–45. https://doi.org/10.1177/1060028016637385(Epub 2016 Mar 8).

    Article  CAS  PubMed  Google Scholar 

  117. Prather K, Harding T, Gabriel D, Mentz RJ, Anstrom KJ. TRANSFORM-HF Trial Protocol. https://clinicaltrials.gov/ct2/show/NCT03296813. Accessed Nov 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Abramov.

Ethics declarations

Funding

Frederik H.Verbrugge is supported by the Special Research Fund (BOF) of Hasselt University (BOF19PD04).

Conflicts of interest

Saif Ali, Sharon Jung, Shuktika Nandkeolyar, Liset Stoletniy, Antoine Sakr, Anthony Hilliard, Frederik H. Verbrugge and Dmitry Abramov declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript. Frederik H. Verbrugge is supported by the Special Research Fund (BOF) of Hasselt University (BOF19PD04).

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Yes.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

All work in this manuscript is original. All authors had access to the data and played a role in writing the manuscript, and each accepts responsibility for the content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Jung, S., Nandkeolyar, S. et al. Inpatient Diuretic Management of Acute Heart Failure: A Practical Review. Am J Cardiovasc Drugs 21, 595–608 (2021). https://doi.org/10.1007/s40256-020-00463-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-020-00463-5

Navigation