Skip to main content

Advertisement

Log in

Oxidative potential of ambient fine particulate matter for ranking of emission sources: an insight for emissions reductions

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

In Delhi, the capital of India, fine particulate matter (PM2.5) poses alarming challenges to human health and well-being. The majority of air pollution studies are focused on measurements of concentrations and composition of atmospheric particulate matter and gaseous species. However, a more useful insight is the actual impact on human health due to air pollution—and how this varies with pollutant abundance and pollutant source. Toxic potential measures the intrinsic/extrinsic toxicity of PM. Source apportionment studies are required to determine dominant sources contributing to PM toxic potential. Thus, health hazardous emission sources could be targeted first to reduce the air pollution levels in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Apte JS, Brauer M, Cohen AJ, Ezzati M, Pope CA III (2018) Ambient PM2. 5 reduces global and regional life expectancy. Environ Sci Technol Lett 5(9):546–551

    Article  CAS  Google Scholar 

  • Balakrishnan K, Dey S, Gupta T, Dhaliwal RS, Brauer M, Cohen AJ et al (2019) The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. Lancet Planetary Health 3(1):26–39

    Article  Google Scholar 

  • Bates JT, Fang T, Verma V, Zeng L, Weber RJ, Tolbert PE, Abrams JY, Sarnat SE, Klein M, Mulholland JA, Russell AG (2019) Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects. Environ Sci Technol 53(8):4003–4019

    Article  CAS  Google Scholar 

  • Bhandari S, Gani S, Patel K, Wang DS, Soni P, Arub Z, Habib G, Apte JS, Hildebrandt Ruiz L (2020) Sources and atmospheric dynamics of organic aerosol in New Delhi, India: insights from receptor modeling. Atmos Chem Phys 20(2):735–752

    Article  CAS  Google Scholar 

  • Bisht DS, Dumka UC, Kaskaoutis DG, Pipal AS, Srivastava AK, Soni VK et al (2015) Carbonaceous aerosols and pollutants over Delhi urban environment: temporal evolution, source apportionment and radiative forcing. Sci Total Environ 521:431–445

    Article  Google Scholar 

  • Brauer M, Amann M, Burnett RT, Cohen A, Dentener F, Ezzati M et al (2012) Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci Technol 46(2):652–660

    Article  CAS  Google Scholar 

  • Brehmer C, Norris C, Barkjohn KK, Bergin MH, Zhang J, Cui X et al (2020) The impact of household air cleaners on the oxidative potential of PM2.5 and the role of metals and sources associated with indoor and outdoor exposure. Environ Res 181:108919

    Article  CAS  Google Scholar 

  • Cervellati F, Benedusi M, Manarini F, Woodby B, Russo M, Valacchi G, Pietrogrande MC (2020) Proinflammatory properties and oxidative effects of atmospheric particle components in human keratinocytes. Chemosphere 240:124746

    Article  CAS  Google Scholar 

  • Cesari D, Merico E, Grasso FM, Decesari S, Belosi F, Manarini F et al (2019) Source apportionment of PM2. 5 and of its oxidative potential in an industrial suburban site in south Italy. Atmosphere 10(12):758

    Article  CAS  Google Scholar 

  • Charrier JG, Anastasio C (2012) On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals. Atmospheric Chem Physics 12(5):11317

    CAS  Google Scholar 

  • Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, ... Froines JR (2005) Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res 99(1):40–47

  • CPCB (2008). Ambient air….in Delhi. EHS/2/2008, Min. of Environ. & For., New Delhi

  • Crobeddu B, Aragao-Santiago L, Bui LC, Boland S, Squiban AB (2017) Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ Pollut 230:125–133

    Article  CAS  Google Scholar 

  • Duan S, Zhang M, Sun Y, Fang Z, Wang H, Li S et al (2020) Mechanism of PM2. 5-induced human bronchial epithelial cell toxicity in central China. J Hazard Mater 396:122747

    Article  CAS  Google Scholar 

  • Dumka UC, Tiwari S, Kaskaoutis DG, Hopke PK, Singh J, Srivastava AK, Bisht DS, Attri SD, Tyagi S, Misra A, Pasha GM (2017) Assessment of PM 2.5 chemical compositions in Delhi: primary vs secondary emissions and contribution to light extinction coefficient and visibility degradation. J Atmos Chem 74(4):423–450

    Article  CAS  Google Scholar 

  • Fang T, Lakey PS, Weber RJ, Shiraiwa M (2019) Oxidative potential of particulate matter and generation of reactive oxygen species in epithelial lining fluid. Environ Sci Technol 53(21):12784–12792

    Article  CAS  Google Scholar 

  • Gadi R, Shivani, Sharma SK, Mandal TK (2019) Source apportionment and health risk assessment of organic constituents in fine ambient aerosols (PM2.5): a complete year study over National Capital Region of India. Chemosphere 221:583–596

    Article  CAS  Google Scholar 

  • Gao D, Mulholland JA, Russell AG, Weber RJ (2020) Characterization of water-insoluble oxidative potential of PM2.5 using the dithiothreitol assay. Atmos Environ 224:117327

    Article  CAS  Google Scholar 

  • Ghude SD, Chate DM, Jena C, Beig G, Kumar R, Barth MC, Pfister GG, Fadnavis S, Pithani P (2016) Premature mortality in India due to PM2. 5 and ozone exposure. Geophys Res Lett 43(9):4650–4658

    Article  CAS  Google Scholar 

  • Gupta S, Gadi R, Sharma SK, Mandal TK (2018) Characterization and source apportionment of organic compounds in PM10 using PCA and PMF at a traffic hotspot of Delhi. Sustain Cities Soc 39:52–67

    Article  Google Scholar 

  • Hakimzadeh M, Soleimanian E, Mousavi A, Borgini A, De Marco C, Ruprecht AA, Sioutas C (2020) The impact of biomass burning on the oxidative potential of PM2. 5 in the metropolitan area of Milan. Atmos Environ 224:117328

    Article  CAS  Google Scholar 

  • Hasheminassab S, Sowlat MH, Pakbin P, Katzenstein A, Low J, Polidori A (2020) High time-resolution and time-integrated measurements of particulate metals and elements in an environmental justice community within the Los Angeles Basin: spatio-temporal trends and source apportionment. Atmospheric Environment: X 7:100089

    Article  CAS  Google Scholar 

  • Jain S, Sharma SK, Choudhary N, Masiwal R, Saxena M, Sharma A, Mandal TK, Gupta A, Gupta NC, Sharma C (2017) Chemical characteristics and source apportionment of PM 2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environ Sci Pollut Res 24(17):14637–14656

    Article  CAS  Google Scholar 

  • Jan R, Roy R, Bhor R, Pai K, Satsangi PG (2020) Toxicological screening of airborne particulate matter in atmosphere of Pune: Reactive oxygen species and cellular toxicity. Environ Pollut 261:113724

    Article  CAS  Google Scholar 

  • Jang E, Alam MS, Harrison RM (2013) Source apportionment of polycyclic aromatic hydrocarbons in urban air using positive matrix factorization and spatial distribution analysis. Atmos Environ 79:271–285

    Article  CAS  Google Scholar 

  • Khanna I (2015) Health risks associated with heavy metals in fine particulate matter: a case study in Delhi city, India. J Geosci Environ Protect 3(02):72–77

    Article  Google Scholar 

  • Kulshrestha MJ, Singh R, Ojha VN (2019) Trends and source attribution of PAHs in fine particulate matter at an urban and a rural site in Indo-Gangetic plain. Urban Clim 29:100485

    Article  Google Scholar 

  • Kumagai Y, Koide S, Taguchi K, Endo A, Nakai Y, Yoshikawa T, Shimojo N (2002) Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem Res Toxicol 15(4):483–489

    Article  CAS  Google Scholar 

  • Li X, Jin L, & Kan H (2019). Air pollution: a global problem needs local fixes

  • Lin P, Yu JZ (2011) Generation of reactive oxygen species mediated by humic-like substances in atmospheric aerosols. Environ Sci Technol 45(24):10362–10368

    Article  CAS  Google Scholar 

  • Liu Q, Lu Z, Xiong Y, Huang F, Zhou J, Schauer JJ (2020) Oxidative potential of ambient PM2. 5 in Wuhan and its comparisons with eight areas of China. Sci Total Environ 701:134844

    Article  CAS  Google Scholar 

  • Manigrasso M, Simonetti G, Astolfi ML, Perrino C, Canepari S, Protano C et al (2020) Oxidative potential associated with urban aerosol deposited into the respiratory system and relevant elemental and ionic fraction contributions. Atmosphere 11(1):6

    Article  CAS  Google Scholar 

  • Moon KJ, Han JS, Ghim YS, Kim YJ (2008) Source apportionment of fine carbonaceous particles by positive matrix factorization at Gosan background site in East Asia. Environ Int 34(5):654–664

    Article  CAS  Google Scholar 

  • Pant P, Baker SJ, Shukla A, Maikawa C, Pollitt KJG, Harrison RM (2015) The PM10 fraction of road dust in the UK and India: characterization, source profiles and oxidative potential. Sci Total Environ 530:445–452

    Article  Google Scholar 

  • Patel A, Rastogi N (2018) Oxidative potential of ambient fine aerosol over a semi-urban site in the Indo-Gangetic Plain. Atmos Environ 175:127–134

    Article  CAS  Google Scholar 

  • Patel A, Rastogi N (2019) Chemical composition and oxidative potential of atmospheric PM10 over the Arabian Sea. ACS Earth Space Chem 4(1):112–121

    Article  Google Scholar 

  • Pirhadi M, Mousavi A, Taghvaee S, Shafer MM, Sioutas C (2020) Semi-volatile components of PM2. 5 in an urban environment: volatility profiles and associated oxidative potential. Atmos Environ 223:117197

    Article  CAS  Google Scholar 

  • Puthussery, J. V., Singh, A., Rai, P., Bhattu, D., Kumar, V., Vats, P., ... & Prevot, A. S. (2020). Real-time measurements of PM2. 5 oxidative potential using dithiothreitol (DTT) assay in Delhi, India. Environmental Science & Technology Letters.

  • Saraswati, Sharma SK, Saxena M, Mandal TK (2019) Characteristics of gaseous and particulate ammonia and their role in the formation of secondary inorganic particulate matter at Delhi, India. Atmos Res 218:34–49

    Article  CAS  Google Scholar 

  • Saxena M, Sharma A, Sen A, Saxena P, Mandal TK, Sharma SK, Sharma C (2017) Water soluble inorganic species of PM10 and PM2. 5 at an urban site of Delhi, India: seasonal variability and sources. Atmos Res 184:112–125

    Article  CAS  Google Scholar 

  • Sharma SK, Mandal TK, Jain S, Sharma A, Saxena M (2016) Source apportionment of PM 2.5 in Delhi, India using PMF model. Bull Environ Contam Toxicol 97(2):286–293

    Article  CAS  Google Scholar 

  • Sharma SK, Mandal TK, Sharma A, Jain S (2018) Carbonaceous species of PM2.5 in megacity Delhi, India during 2012–2016. Bull Environ Contam Toxicol 100(5):695–701

    Article  CAS  Google Scholar 

  • Shivani, Gadi R, Saxena M et al (2019a) Short-term degradation of air quality during major firework events in Delhi, India. Meteorol Atmos Phys 131:753–764

    Article  Google Scholar 

  • Shivani, Gadi R, Sharma SK, Mandal TK (2019b) Seasonal variation, source apportionment and source attributed health risk of fine carbonaceous aerosols over National Capital Region, India. Chemosphere 237:124500

    Article  CAS  Google Scholar 

  • Shivani, Gadi R, Sharma SK, Mandal TK, Kumar R, Mona S, Kumar S, Kumar S (2018) Levels and sources of organic compounds in fine ambient aerosols over National Capital Region of India. Environ Sci Pollut Res 25(31):31071–31090

    Article  CAS  Google Scholar 

  • Soleimanian E, Mousavi A, Taghvaee S, Sowlat MH, Hasheminassab S, Polidori A, Sioutas C (2019) Spatial trends and sources of PM2. 5 organic carbon volatility fractions (OCx) across the Los Angeles Basin. Atmos Environ 209:201–211

    Article  CAS  Google Scholar 

  • Soleimanian E, Taghvaee S, Sioutas C (2020) Characterization of organic compounds and oxidative potential of aqueous PM2. 5 suspensions collected via an aerosol-into-liquid collector for use in toxicology studies. Atmos Environ 241:117839

    Article  CAS  Google Scholar 

  • Tian J, Li J, Yin H, Ma L, Zhang J, Zhai Q, Duan S, Zhang L (2021) In vitro and in vivo uterine metabolic disorders induced by silica nanoparticle through the AMPK signaling pathway. Sci Total Environ 762:143152

    Article  CAS  Google Scholar 

  • Tong H, Zhang Y, Filippi A, Wang T, Li C, Liu F et al (2019) Radical formation by fine particulate matter associated with highly oxygenated molecules. Environ Sci Technol 53(21):12506–12518

    Article  CAS  Google Scholar 

  • Tuet WY, Chen Y, Xu L, Fok S, Gao D, Weber RJ, Ng NL (2017) Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds. Atmos Chem Phys 17(2)

  • Verma V, Fang T, Guo H, King L, Bates J T, Peltier R E, ... & Weber R J (2014). Reactive oxygen species associated with water-soluble PM 2.5 in the southeastern United States: spatiotemporal trends and source apportionment. Atmospheric Chem Physics Discussions, 14(13)

  • Verma V, Rico-Martinez R, Kotra N, King L, Liu J, Snell TW, Weber RJ (2012) Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols. Environ Sci Technol 46(20):11384–11392

    Article  CAS  Google Scholar 

  • Verma V, Wang Y, El-Afifi R, Fang T, Rowland J, Russell AG, Weber RJ (2015) Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity–assessing the importance of quinones and atmospheric aging. Atmos Environ 120:351–359

    Article  CAS  Google Scholar 

  • Wang S, Hu G, Yan Y, Wang S, Yu R, Cui J (2019) Source apportionment of metal elements in PM2. 5 in a coastal city in Southeast China: Combined Pb-Sr-Nd isotopes with PMF method. Atmos Environ 198:302–312

    Article  CAS  Google Scholar 

  • Wang Y, Wang M, Li S, Sun H, Mu Z, Zhang L et al (2020) Study on the oxidation potential of the water-soluble components of ambient PM2. 5 over Xi’an, China: pollution levels, source apportionment and transport pathways. Environ Int 136:105515

    Article  CAS  Google Scholar 

  • Weber S, Uzu G, Calas A, Chevrier F, Besombes JL, Charron A, Salameh D, Ježek I, Močnik G, Jaffrezo JL (2018) An apportionment method for the oxidative potential of atmospheric particulate matter sources: application to a one-year study in Chamonix, France. Atmos Chem Phys 18(13):9617–9629

    Article  CAS  Google Scholar 

  • WHO (2018a) Global ambient air quality database. Recuperado el, 7, 2018

  • WHO (2018b) World health statistics 2018: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO

  • Yuan Y, Wu Y, Ge X, Nie D, Wang M, Zhou H, Chen M (2019) In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells. Sci Total Environ 678:301–308

    Article  CAS  Google Scholar 

  • Zhao C, Wang Y, Su Z, Pu W, Niu M, Song S et al (2020) Respiratory exposure to PM2. 5 soluble extract disrupts mucosal barrier function and promotes the development of experimental asthma. Sci Total Environ 730:139145

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Amita Dev, Vice Chancellor, IGDTUW, Delhi, for her consistent guidance and inspiration. Authors are also thankful to Prof. William Bloss, University of Birmingham, UK for the significant inputs. One of the authors also acknowledges the award of Senior Research Fellowship from Council of Scientific and Industrial Research [(09/1259(0001)2k19 EMR-I].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranu Gadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivani, Gadi, R. Oxidative potential of ambient fine particulate matter for ranking of emission sources: an insight for emissions reductions. Air Qual Atmos Health 14, 1149–1153 (2021). https://doi.org/10.1007/s11869-021-01005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-021-01005-x

Keywords

Navigation