Skip to main content
Log in

Design, Development, In Vitro and Preliminary In Vivo Evaluation of a Novel Photo-Angioplasty Device: Lumi-Solve

  • Short Communication
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Paclitaxel (PTX)-coated drug eluting balloon catheters (DEBc) used in the management of neointimal hyperplasia (NIH) have been associated with safety concerns. Alternative coating agents and targeted delivery systems may improve safety and DEBc efficacy. Utilizing a multi-platform approach we designed, developed and evaluated Lumi-Solve, a novel DEBc, coated with ultraviolet (UV) 365 nm-activated caged metacept-3 (c-MCT-3), an epigenetic agent from the histone deacetylase inhibitor (HDACi) class.

Methods

In vitro catheter and contrast media transmission of UV365nm was evaluated spectroscopically. UV365nm conversion of c-MCT-3 to MCT-3 was evaluated chromatographically. Cellular toxicity and HDACi activity of c-MCT-3 ∓UV365nm was evaluated in vitro. In vivo UV365nm conversion of c-MCT-3 to MCT-3 was evaluated in an ovine carotid artery model.

Results

Catheter material and dilute contrast media did not attenuate UV365nm transmission or c-MCT-3 activation. c-MCT-3 demonstrated less cellular toxicity than MCT-3 and PTX. UV365nm-activated c-MCT-3 demonstrated HDACi activity. In vivo activation of c-MCT-3 produced MCT-3.

Conclusions

Lumi-Solve, a novel DEBc device developed utilizing a combination of chemical, fibre-optic and catheter based technology platforms, demonstrated potential for targeted delivery of bioactive HDACi to the blood vessel wall supporting direct application to the management of NIH and warranting additional in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Data availability

All data generated or analyzed during this study are included in this manuscript and its supplementary information files.

References

  1. Arnold, R. D., J. E. Slack, and R. M. Straubinger. Quantification of doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J. Chromatogr. B 808:141–152, 2004.

    Article  CAS  Google Scholar 

  2. Burdick & Jackson Laboratories High-Purity Solvent Guide. Muskegon. USA: MI, 1980.

    Google Scholar 

  3. Byrne, R. A., M. Joner, F. Alfonso, and A. Kastrati. Drug-coated balloon therapy in coronary and peripheral artery disease. Nat. Rev. Cardiol. 11:13–23, 2014.

    Article  CAS  Google Scholar 

  4. Dear, A. E., H. B. Liu, P. A. Mayes, and P. Perlmutter. Conformational analogues of Oxamflatin as histone deacetylase inhibitors. Org. Biomol. Chem. 4:3778–3784, 2006.

    Article  CAS  Google Scholar 

  5. Faggioni, M., and R. Mehran. Preventing contrast-induced renal failure: a guide. Interv. Cardiol. 11:98–104, 2016.

    Article  Google Scholar 

  6. Granada, J. F., M. Stenoien, P. P. Buszman, A. Tellez, D. Langanki, G. L. Kaluza, M. B. Leon, W. Gray, M. R. Jaff, and R. S. Schwartz. Mechanisms of tissue uptake and retention of paclitaxel-coated balloons: impact on neointimal proliferation and healing. Open Heart 1:e000117, 2014.

    Article  Google Scholar 

  7. Katsanos, K., B. P. Geisler, A. M. Garner, H. Zayed, T. Cleveland, and J. B. Pietzsch. Economic analysis of endovascular drug-eluting treatments for femoropopliteal artery disease in the UK. BMJ Open 6:e011245, 2016.

    Article  Google Scholar 

  8. Katsanos, K., S. Spiliopoulos, P. Kitrou, M. Krokidis, and D. Karnabatidis. Risk of death following application of paclitaxel-coated balloons and stents in the femoropopliteal artery of the leg: a systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 7:e011245, 2018.

    Article  Google Scholar 

  9. Katsanos, K., S. Spiliopoulos, P. Kitrou, M. Krokidis, I. Paraskevopoulos, and Karnabatidis. Risk of death and amputation with use of paclitaxel-coated balloons in the infrapopliteal arteries for treatment of critical limb ischemia: a systematic review and meta-analysis of randomized controlled trials. J. Vasc. Interv. Radiol. 31:202–212, 2020.

    Article  Google Scholar 

  10. Laird, J. A., P. A. Schneider, M. R. Jaff, et al. Long-term clinical effectiveness of a drug-coated balloon for the treatment of femoropopliteal lesions. Circ. Cardiovasc. Interv. 12:e007702, 2019.

    Article  CAS  Google Scholar 

  11. Lipinski, C. A., F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46:3–26, 2001.

    Article  CAS  Google Scholar 

  12. Liu, H. B., M. Byrne, P. Perlmutter, G. R. Sama, A. Walker, J. Subbiah, B. Ozcelik, T. Gaspari, R. E. Widdop, K. Byron, Y. C. Chen, D. M. Kaye, and A. E. Dear. A novel epigenetic drug eluting balloon angioplasty Device: evaluation in a Large Animal Model of Neointimal Hyperplasia. Cardiovasc. Drugs Ther. 33:687–692, 2019.

    Article  CAS  Google Scholar 

  13. Montgomery, A., J. Kushner, and D. Altman. Cutaneous polyarteritis nodosa resulting from a paclitaxel-eluting balloon angioplasty. JAAD Case Rep. 4:50–52, 2017.

    Article  Google Scholar 

  14. Padhye, M. R., and P. S. Tamhane. Luminescence studies in poly(ethylene terephthalate) films at 77 K Investigation of emission centres in polymers. Die Angew. Makromol. Chem. 69:33–45, 1978.

    Article  CAS  Google Scholar 

  15. Perrée, J., T. G. van Leeuwen, E. Velema, M. Smeets, D. de Kleijn, and C. U. Borst. VB-activated psoralen reduces luminal narrowing after balloon dilation because of inhibition of constrictive remodeling. Photochem. Photobiol. 75:68–75, 2002.

    Article  Google Scholar 

  16. Prasad, S. G., A. De, and U. De. Structural and optical investigations of radiation damage in transparent PET polymer films. Int. J. Spectroscopy 2011. https://doi.org/10.1155/2011/810936.

    Article  Google Scholar 

  17. Rahmatzadeh, M., H. B. Liu, S. M. Krishna, T. A. Gaspari, I. Welungoda, R. E. Widdop, and A. E. Dear. A novel agent with histone deacetylase inhibitory activity attenuates neointimal hyperplasia. Cardiovasc. Drugs Ther. 28:395–406, 2014.

    Article  CAS  Google Scholar 

  18. Sama, G. R., H. B. Liu, S. Mountford, P. Thompson, A. Robinson, and A. E. Dear. Synthesis and biological evaluation of a novel photo-activated histone deacetylase inhibitor. Biorg. Med. Chem. Lett. 30:127291, 2020.

    Article  CAS  Google Scholar 

  19. Sonnenschein, M. F., and C. M. Roland. Absorption and fluorescence spectra of poly(ethylene terephthalate) dimer. Polymer 31:2023–2026, 1990.

    Article  CAS  Google Scholar 

  20. Speck, U., B. Cremers, B. Kelsch, M. Biedermann, Y. P. Clever, S. Schaffner, D. Mahnkopf, U. Hanisch, M. Böhm, and B. Scheller. Do pharmacokinetics explain persistent restenosis inhibition by a single dose of paclitaxel? Circ. Cardiovasc. Interv. 5:392–400, 2012.

    Article  CAS  Google Scholar 

  21. Speck, U., A. Häckel, E. Schellenberger, S. Kamann, M. Löchel, Y. P. Clever, D. Peters, B. Scheller, S. Trog, and S. Bettink. Drug distribution and basic pharmacology of paclitaxel/resveratrol-coated balloon catheters. Cardiovasc. Intervent. Radiol. 41:1599–1610, 2018.

    Article  Google Scholar 

  22. Tang, T. Y., E. C. Choke, S. R. Walsh, A. Tiwari, and T. T. Chong. What Now for the endovascular community after the paclitaxel mortality meta-analysis: can sirolimus replace paclitaxel in the peripheral vasculature? J. Endovasc. Ther. 27:153–156, 2020.

    Article  Google Scholar 

  23. Tepe, G., J. Laird, P. Schneider, et al. Drug-coated balloon versus standard percutaneous transluminal angioplasty for the treatment of superficial femoral and popliteal peripheral artery disease: 12-month results from the IN.PACT SFA randomized trial. Circulation 131:495–502, 2015.

    Article  CAS  Google Scholar 

  24. Torii, S., H. Jinnouchi, A. Sakamoto, M. Kutyna, A. Cornelissen, S. Kuntz, L. Guo, H. Mori, E. Harari, K. H. Paek, R. Fernandez, D. Chahal, M. E. Romero, F. D. Kolodgie, A. Gupta, R. Virmani, and A. V. Finn. Drug-eluting coronary stents: insights from preclinical and pathology studies. Nat. Rev. Cardiol. 17:37–51, 2020.

    Article  CAS  Google Scholar 

  25. Waksman, R., I. M. Leitch, J. Roessler, H. Yazdi, R. Seabron, F. Tio, R. W. Scott, R. I. Grove, S. Rychnovsky, B. Robinson, R. Pakala, and E. Cheneau. Intracoronary photodynamic therapy reduces neointimal growth without suppressing re-endothelialisation in a porcine model. Heart 92:1138–1144, 2006.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr Gopal Reddy Sama: Monash Graduate Scholarship, Monash International Postgraduate Research Scholarship, Dean’s Postgraduate Research Scholarship and Dean’s International Postgraduate Research Scholarship. Medtronic Australasia Pty and Abbott Australasia Pty Ltd: Provision of PABA. Nathaniel Sperka: Prizmatix Ltd, Israel: Advice and provision of fibre-optics. Roland Bays: Medlight SA, Switzerland: Advice and provision of fibre-optics.

Funding

The study was supported, in part, by the Eastern Health Foundation, Robert C Bulley Surgical Research Grant. The Eastern Health Foundation had no role in the design of the study, collection, analysis, and interpretation of data or in writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony E. Dear.

Ethics declarations

Conflict of interest

Authors HongBin Liu, Gopal Sama, Simon Mountford, Philip E. Thompson, Andrew Rodda, John Forsythe, Helmut Thissen, Melissa Byrne, David M Kaye and Anthony E Dear are named as inventors on International Patent Application PCT/AU2020/050009 filed on behalf of Monash University, Baker Heart and Diabetes Institute and the Commonwealth Scientific and Industrial Research Organisation which, in part, relates to work presented in this manuscript.

Ethics approval

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees. All procedures performed in studies involving animals were in accordance with the ethical standards of the Baker Heart and Diabetes Institute Animal Ethics Committee, Melbourne, Australia, Approval number 1513767.1.

Additional information

Associate Editor James E. Moore oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 15928 kb)

Supplementary material 2 (MP4 154128 kb)

Supplementary material 3 (MP4 66454 kb)

Supplementary material 4 (MP4 122064 kb)

Supplementary material 5 (TIF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Sama, G.R., Robinson, A. et al. Design, Development, In Vitro and Preliminary In Vivo Evaluation of a Novel Photo-Angioplasty Device: Lumi-Solve. Cardiovasc Eng Tech 12, 466–473 (2021). https://doi.org/10.1007/s13239-021-00525-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00525-y

Keywords

Navigation