Skip to main content
Log in

Computed Tomography Imaging Predictors of Intracerebral Hemorrhage Expansion

  • Critical Care (S.A. Mayer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hematoma expansion (HE) is strongly associated with poor clinical outcome and is a compelling target for improving outcome after intracerebral hemorrhage (ICH). Non-contrast computed tomography (NCCT) is widely used in clinical practice due to its faster acquisition at the presence of acute stroke. Recently, imaging markers on NCCT are increasingly used for predicting HE. We comprehensively review the current evidence on HE prediction using NCCT and provide a summary for assessment of these markers in future research studies.

Recent Findings

Predictors of HE on NCCT have been described in reports of several studies. The proposed markers, including swirl sign, blend sign, black hole sign, island sign, satellite sign, and subarachnoid extension, were all significantly associated with HE and poor outcome in their small sample studies after ICH.

Summary

In summary, the optimal management of ICH remains a therapeutic dilemma. Therefore, using NCCT markers to select patients at high risk of HE is urgently needed. These markers may allow rapid identification and provide potential targets for anti-HE treatments in patients with acute ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ICH:

Intracerebral hemorrhage

GCS:

Glasgow Coma Scale

IVH:

Intraventricular hemorrhage

HE:

Hematoma expansion

CTA:

Computed tomographic angiography

NCCT:

Noncontrast computed tomography

PHE:

Perihematomal edema

MIS:

Minimally invasive surgery

HU:

Hounsifield unit

ROC:

Receiver operating characteristic

AUC:

Area under the curve

MLF:

Midline shift

CAA:

Cerebral amyloid angiopathy

SAHE:

Subarachnoid extension

cSS:

Cortical superficial siderosis

MRI:

Magnetic resonance imaging

MCTAV:

Minimal computed tomography attenuation value

ROI:

Region of interest

CI:

Confidence interval

CT:

Computed tomography

INTERACT-1:

The Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial 1

NTERACT-2:

The Second Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial

ATACH-2:

The Antihypertensive Treatment of Acute Cerebral Hemorrhage

PREDICT:

The Prediction of Hematoma Growth and Outcome in Patients With Intracerebral Hemorrhage Using the CT-Angiography Spot Sign

FAST:

The Factor VII for Acute hemorrhagic Stroke Trial

MISTIE:

The Minimally Invasive Surgery Plus Alteplase for Intracerebral Hemorrhage Evacuation.

References

Papers of particular interest, published recently, have been highlighted as:•• Of major importance

  1. Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–44. https://doi.org/10.1016/s0140-6736(09)60371-8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, et al. Global burden of stroke and risk factors in 188 countries, during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 2016;15(9):913–24. https://doi.org/10.1016/S1474-4422(16)30073-4.

    Article  PubMed  Google Scholar 

  3. Brouwers HB, Chang Y, Falcone GJ, Cai X, Ayres AM, Battey TW, et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014;71(2):158–64. https://doi.org/10.1001/jamaneurol.2013.5433.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Delcourt C, Huang Y, Arima H, Chalmers J, Davis SM, Heeley EL, et al. Hematoma growth and outcomes in intracerebral hemorrhage: the INTERACT1 study. Neurology. 2012;79(4):314–9. https://doi.org/10.1212/WNL.0b013e318260cbba.

    Article  PubMed  Google Scholar 

  5. Romero JM, Brouwers HB, Lu J, Delgado Almandoz JE, Kelly H, et al. Prospective validation of the computed tomographic angiography spot sign score for intracerebral hemorrhage. Stroke. 2013;44(11):3097–102. https://doi.org/10.1161/STROKEAHA.113.002752.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wada R, Aviv RI, Fox AJ, Sahlas DJ, Gladstone DJ, Tomlinson G, et al. CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke. 2007;38(4):1257–62. https://doi.org/10.1161/01.STR.0000259633.59404.

    Article  PubMed  Google Scholar 

  7. Goldstein JN, Fazen LE, Snider R, Schwab K, Greenberg SM, Smith EE, et al. Contrast extravasation on CT angiography predicts hematoma expansion in intracerebral hemorrhage. Neurology. 2007;68(12):889–94. https://doi.org/10.1212/01.wnl.0000257087.22852.21.

    Article  CAS  PubMed  Google Scholar 

  8. Boulouis G, Morotti A, Brouwers HB, Charidimou A, Jessel MJ, Auriel E, et al. Association between hypodensities detected by computed tomography and hematoma expansion in patients with intracerebral hemorrhage. JAMA Neurol. 2016;73(8):961–8. https://doi.org/10.1001/jamaneurol.2016.1218.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li Q, Zhang G, Xiong X, Wang XC, Yang WS, Li KW, et al. Black hole sign: novel imaging marker that predicts hematoma growth in patients with intracerebral hemorrhage. Stroke. 2016;47(7):1777–81. https://doi.org/10.1161/STROKEAHA.116.013186.

    Article  PubMed  Google Scholar 

  10. Li Q, Zhang G, Huang YJ, Dong MX, Lv FJ, Wei X, et al. Blend sign on computed tomography: novel and reliable predictor for early hematoma growth in patients with intracerebral hemorrhage. Stroke. 2015;46(8):2119–23. https://doi.org/10.1161/STROKEAHA.115.009185.

    Article  PubMed  Google Scholar 

  11. Selariu E, Zia E, Brizzi M, Abul-Kasim K. Swirl sign in intracerebral haemorrhage: definition, prevalence, reliability and prognostic value. BMC Neurol. 2012;12:109. https://doi.org/10.1186/1471-2377-12-109.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Morotti A, Dowlatshahi D, Boulouis G, Al-Ajlan F, Demchuk AM, Aviv RI. et al; ATACH-II, NETT, and PREDICT Investigators. Predicting intracerebral hemorrhage expansion with noncontrast computed tomography: the BAT score. Stroke. 2018;49(5):1163–9. https://doi.org/10.1161/STROKEAHA.117.020138.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sporns PB, Schwake M, Schmidt R, Kemmling A, Minnerup J, Schwindt W, et al. Computed tomographic blend sign is associated with computed tomographic angiography spot sign and predicts secondary neurological deterioration after intracerebral hemorrhage. Stroke. 2017;48(1):131–5. https://doi.org/10.1161/STROKEAHA.116.014068This study reported blend sign was a promising imaging marker to predict secondary neurologic deterioration.

    Article  PubMed  Google Scholar 

  14. Dowlatshahi D, Demchuk AM, Flaherty ML, Ali M, Lyden PL. Smith EE; VISTA Collaboration. Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology. 2011;76(14):1238–44. https://doi.org/10.1212/WNL.0b013e3182143317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Delcourt C, Huang Y, Wang J, Heeley E, Lindley R, Stapf C, et al. The second (main) phase of an open, randomised, multicentre study to investigate the effectiveness of an intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT2). Int J Stroke. 2010;5(2):110–6. https://doi.org/10.1111/j.1747-4949.2010.00415.x.

    Article  CAS  PubMed  Google Scholar 

  16. Qureshi AI, Palesch YY, Barsan WG, Hanley DF, Hsu CY, Martin RL, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med. 2016;375(11):1033–43. https://doi.org/10.1056/NEJMoa1603460.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Demchuk AM, Dowlatshahi D, Rodriguez-Luna D, Molina CA, Blas YS, Dzialowski I, et al. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT- angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol. 2012;11(4):307–14. https://doi.org/10.1016/S1474-4422(12)70038-8.

    Article  PubMed  Google Scholar 

  18. Broderick JP, Diringer MN, Hill MD, Brun NC, Mayer SA, Steiner T, et al. Determinants of intracerebral hemorrhage growth: an exploratory analysis. Stroke. 2007;38(3):1072–5. https://doi.org/10.1161/01.STR.0000258078.35316.30.

    Article  CAS  PubMed  Google Scholar 

  19. Maas MB, Nemeth AJ, Rosenberg NF, Kosteva AR, Prabhakaran S, Naidech AM. Delayed intraventricular hemorrhage is common and worsens outcomes in intracerebral hemorrhage. Neurology. 2013;80(14):1295–9. https://doi.org/10.1212/WNL.0b013e31828ab2a7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Witsch J, Bruce E, Meyers E, Velazquez A, Schmidt JM, Suwatcharangkoon S, et al. Intraventricular hemorrhage expansion in patients with spontaneous intracerebral hemorrhage. Neurology. 2015;84(10):989–94. https://doi.org/10.1212/WNL.0000000000001344.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yogendrakumar V, Ramsay T, Fergusson D, Demchuk AM, Aviv RI, Rodriguez-Luna D, et al. New and expanding ventricular hemorrhage predicts poor outcome in acute intracerebral hemorrhage. Neurology. 2019;93(9):e879–88. https://doi.org/10.1212/WNL.0000000000008007.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yogendrakumar V, Ramsay T, Fergusson DA, Demchuk AM, Aviv RI, Rodriguez-Luna D, et al. Redefining hematoma expansion with the inclusion of intraventricular hemorrhage growth. Stroke. 2020;51(4):1120–7. https://doi.org/10.1161/STROKEAHA.119.027451The authors proved that the revised definitions of HE could improve the overall predictive ability.

    Article  PubMed  Google Scholar 

  23. Du FZ, Jiang R, Gu M, He C, Guan J. The accuracy of spot sign in predicting hematoma expansion after intracerebral hemorrhage: a systematic review and meta-analysis. PLoS One. 2014;9(12):e115777. https://doi.org/10.1371/journal.pone.0115777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujii Y, Tanaka R, Takeuchi S, Koike T, Minakawa T, Sasaki O. Hematoma enlargement in spontaneous intracerebral hemorrhage. J Neurosurg. 1994;80(1):51–7. https://doi.org/10.3171/jns.1994.80.1.0051.

    Article  CAS  PubMed  Google Scholar 

  25. Fujii Y, Takeuchi S, Sasaki O, Minakawa T, Tanaka R. Multivariate analysis of predictors of hematoma enlargement in spontaneous intracerebral hemorrhage. Stroke. 1998;29(6):1160–6. https://doi.org/10.1161/01.str.29.6.1160.

    Article  CAS  PubMed  Google Scholar 

  26. Barras CD, Tress BM, Christensen S, MacGregor L, Collins M, Desmond PM, et al. Density and shape as CT predictors of intracerebral hemorrhage growth. Stroke. 2009;40(4):1325–31. https://doi.org/10.1161/STROKEAHA.108.536888.

    Article  PubMed  Google Scholar 

  27. Blacquiere D, Demchuk AM, Al-Hazzaa M, Deshpande A, Petrcich W, Aviv RI, et al. Intracerebral hematoma morphologic appearance on noncontrast computed tomography predicts significant hematoma expansion. Stroke. 2015;46(11):3111–6. https://doi.org/10.1161/STROKEAHA.115.010566.

    Article  CAS  PubMed  Google Scholar 

  28. Takeda R, Ogura T, Ooigawa H, Fushihara G, Yoshikawa S, Okada D, et al. A practical prediction model for early hematoma expansion in spontaneous deep ganglionic intracerebral hemorrhage. Clin Neurol Neurosurg. 2013;115(7):1028–31. https://doi.org/10.1016/j.clineuro.2012.10.016.

    Article  PubMed  Google Scholar 

  29. Morotti A, Boulouis G, Romero JM, Brouwers HB, Jessel MJ, Vashkevich A, et al. Blood pressure reduction and noncontrast CT markers of intracerebral hemorrhage expansion. Neurology. 2017;89(6):548–54. https://doi.org/10.1212/WNL.0000000000004210.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li Q, Liu QJ, Yang WS, Wang XC, Zhao LB, Xiong X, et al. Island sign: an imaging predictor for early hematoma expansion and poor outcome in patients with intracerebral hemorrhage. Stroke. 2017;48(11):3019–25. https://doi.org/10.1161/STROKEAHA.117.017985.

    Article  PubMed  Google Scholar 

  31. Zhang F, Li H, Qian J, Zhang S, Tao C, You C, et al. Island sign predicts long-term poor outcome and mortality in patients with intracerebral hemorrhage. World Neurosurg. 2018;120:e304–12. https://doi.org/10.1016/j.wneu.2018.08.056.

    Article  PubMed  Google Scholar 

  32. Huang Y, Zhang Q, Yang M. A reliable grading system for prediction of hematoma expansion in intracerebral hemorrhage in the basal ganglia. Biosci Trends. 2018;12(2):193–200. https://doi.org/10.5582/bst.2018.01061.

    Article  PubMed  Google Scholar 

  33. Zheng J, Yu Z, Wang C, Li M, Wang X, You C, et al. Evaluating the predictive value of island sign and spot sign for hematoma expansion in spontaneous intracerebral hemorrhage. World Neurosurg. 2018;117:e167–71. https://doi.org/10.1016/j.wneu.2018.05.221.

    Article  PubMed  Google Scholar 

  34. Wei Y, Zhu G, Gao Y, Chang J, Zhang H, Liu N, et al. Island sign predicts hematoma expansion and poor outcome after intracerebral hemorrhage: a systematic review and meta-analysis. Front Neurol. 2020;11:429. https://doi.org/10.3389/fneur.2020.00429.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shimoda Y, Ohtomo S, Arai H, Okada K, Tominaga T. Satellite sign: a poor outcome predictor in intracerebral hemorrhage. Cerebrovasc Dis. 2017;44(3-4):105–12. https://doi.org/10.1159/000477179.

    Article  PubMed  Google Scholar 

  36. Wang CW, Liu YJ, Lee YH, Hueng DY, Fan HC, Yang FC, et al. Hematoma shape, hematoma size, Glasgow coma scale score and ICH score: which predicts the 30-day mortality better for intracerebral hematoma? PLoS One. 2014;9(7):e102326. https://doi.org/10.1371/journal.pone.0102326.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Boulouis G, Morotti A, Brouwers HB, Charidimou A, Jessel MJ, Auriel E, et al. Noncontrast computed tomography hypodensities predict poor outcome in intracerebral hemorrhage patients. Stroke. 2016;47(10):2511–6. https://doi.org/10.1161/STROKEAHA.116.014425.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Delcourt C, Zhang S, Arima H, Sato S, Al-Shahi Salman R, Wang X, et al. Significance of hematoma shape and density in intracerebral hemorrhage: the intensive blood pressure reduction in acute intracerebral hemorrhage trial study. Stroke. 2016;47(5):1227–32. https://doi.org/10.1161/STROKEAHA.116.012921.

    Article  CAS  PubMed  Google Scholar 

  39. Yang J, Arima H, Wu G, Heeley E, Delcourt C, Zhou J, et al. Prognostic significance of perihematomal edema in acute intracerebral hemorrhage: pooled analysis from the intensive blood pressure reduction in acute cerebral hemorrhage trial studies. Stroke. 2015;46(4):1009–13. https://doi.org/10.1161/STROKEAHA.114.007154.

    Article  PubMed  Google Scholar 

  40. Wang J, Doré S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908. https://doi.org/10.1038/sj.jcbfm.9600403.

    Article  CAS  PubMed  Google Scholar 

  41. Li Q, Yang WS, Wang XC, Cao D, Zhu D, Lv FJ, et al. Blend sign predicts poor outcome in patients with intracerebral hemorrhage. PLoS One. 2017;12(8):e0183082. https://doi.org/10.1371/journal.pone.0183082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu Z, Zheng J, Guo R, Ma L, Li M, Wang X, et al. Performance of blend sign in predicting hematoma expansion in intracerebral hemorrhage: a meta-analysis. Clin Neurol Neurosurg. 2017;163:84–9. https://doi.org/10.1016/j.clineuro.2017.10.017.

    Article  PubMed  Google Scholar 

  43. Wu G, Shen Z, Wang L, Sun S, Luo J, Mao Y. Post-operative re-bleeding in patients with hypertensive ICH is closely associated with the CT blend sign. BMC Neurol. 2017;17(1):131. https://doi.org/10.1186/s12883-017-0910-6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sporns PB, Schwake M, Kemmling A, Minnerup J, Schwindt W, Niederstadt T, et al. Comparison of spot sign, blend sign and black hole sign for outcome prediction in patients with intracerebral hemorrhage. J Stroke. 2017;19(3):333–9. https://doi.org/10.5853/jos.2016.02061.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li Q, Yang WS, Chen SL, Lv FR, Lv FJ, Hu X, et al. Black hole sign predicts poor outcome in patients with intracerebral hemorrhage. Cerebrovasc Dis. 2018;45(1-2):48–53. https://doi.org/10.1159/000486163.

    Article  PubMed  Google Scholar 

  46. Zheng J, Yu Z, Guo R, Li H, You C, Ma L. Meta-analysis of predictive significance of the black hole sign for hematoma expansion in intracerebral hemorrhage. World Neurosurg. 2018;115:e711–6. https://doi.org/10.1016/j.wneu.2018.04.140.

    Article  PubMed  Google Scholar 

  47. Xiong X, Li Q, Yang WS, Wei X, Hu X, Wang XC, et al. Comparison of Swirl Sign and Black Hole Sign in Predicting Early Hematoma Growth in Patients with Spontaneous Intracerebral Hemorrhage. Med Sci Monit. 2018;24:567–73. https://doi.org/10.12659/msm.906708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu Z, Zheng J, Ma L, Guo R, Li M, Wang X, et al. The predictive accuracy of the black hole sign and the spot sign for hematoma expansion in patients with spontaneous intracerebral hemorrhage. Neurol Sci. 2017;38(9):1591–7. https://doi.org/10.1007/s10072-017-3006-6.

    Article  PubMed  Google Scholar 

  49. Morotti A, Boulouis G, Charidimou A, Schwab K, Kourkoulis C, Anderson CD, et al. Integration of computed tomographic angiography spot sign and noncontrast computed tomographic hypodensities to predict hematoma expansion. Stroke. 2018;49(9):2067–73. https://doi.org/10.1161/STROKEAHA.118.022010.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dong J, Yang X, Xiang J, Dong Q, Tang Y, Chu H. Hypodensities detected at 1.5-3 h after intracerebral hemorrhage better predicts secondary neurological deterioration. J Neurol Sci. 2019;396:219–24. https://doi.org/10.1016/j.jns.2018.11.032.

    Article  PubMed  Google Scholar 

  51. Al-Nakshabandi NA. The swirl sign. Radiology. 2001;218(2):433. https://doi.org/10.1148/radiology.218.2.r01fe09433.

    Article  CAS  PubMed  Google Scholar 

  52. Wagemans BA, Klinkenberg S, Postma AA. Swirl sign and spot sign in intraparenchymal hematoma. Neurology. 2016;87(18):e225–6. https://doi.org/10.1212/WNL.0000000000003290.

    Article  PubMed  Google Scholar 

  53. Kim J, Smith A, Hemphill JC 3rd, Smith WS, Lu Y, Dillon WP, et al. Contrast extravasation on CT predicts mortality in primary intracerebral hemorrhage. AJNR Am J Neuroradiol. 2008;29(3):520–5. https://doi.org/10.3174/ajnr.A0859.

    Article  CAS  PubMed  Google Scholar 

  54. Ng D, Churilov L, Mitchell P, Dowling R, Yan B. The CT swirl sign is associated with hematoma expansion in intracerebral hemorrhage. AJNR Am J Neuroradiol. 2018;39(2):232–7. https://doi.org/10.3174/ajnr.A5465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pfleger MJ, Hardee EP, Contant CF Jr, Hayman LA. Sensitivity and specificity of fluid-blood levels for coagulopathy in acute intracerebral hematomas. AJNR Am J Neuroradiol. 1994;15(2):217–23.

    CAS  PubMed  Google Scholar 

  56. Suzuki R, Yamasaki T, Koizumi S, Nozaki T, Hiramatsu H, Sameshima T, et al. Fluid-blood level and hematoma expansion in a cerebral amyloid angiopathy-associated intracerebral hematoma. Am J Case Rep. 2019;20:844–50. https://doi.org/10.12659/AJCR.915919.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sato S, Delcourt C, Zhang S, Arima H, Heeley E, Zheng D, et al. Determinants and prognostic significance of hematoma sedimentation levels in acute intracerebral hemorrhage. Cerebrovasc Dis. 2016;41(1-2):80–6. https://doi.org/10.1159/000442532.

    Article  PubMed  Google Scholar 

  58. Daniels DL, Haughton VM, Williams AL, Strother CM. Arteriovenous malformation simulating a cyst on computed tomography. Radiology. 1979;133(2):393–4. https://doi.org/10.1148/133.2.393.

    Article  CAS  PubMed  Google Scholar 

  59. New PF, Aronow S. Attenuation measurements of whole blood and blood fractions in computed tomography. Radiology. 1976;121(3 Pt. 1):635–40. https://doi.org/10.1148/121.3.635.

    Article  CAS  PubMed  Google Scholar 

  60. Schlunk F, Greenberg SM. The pathophysiology of intracerebral hemorrhage formation and expansion. Transl Stroke Res. 2015;6(4):257–63. https://doi.org/10.1007/s12975-015-0410-1.

    Article  CAS  PubMed  Google Scholar 

  61. Wolverson MK, Crepps LF, Sundaram M, Heiberg E, Vas WG, Shields JB. Hyperdensity of recent hemorrhage at body computed tomography: incidence and morphologic variation. Radiology. 1983;148(3):779–84. https://doi.org/10.1148/radiology.148.3.6878700.

    Article  CAS  PubMed  Google Scholar 

  62. Boulouis G, Morotti A, Charidimou A, Dowlatshahi D, Goldstein JN. Noncontrast computed tomography markers of intracerebral hemorrhage expansion. Stroke. 2017;48(4):1120–5. https://doi.org/10.1161/STROKEAHA.116.015062.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Morotti A, Poli L, Leuci E, Mazzacane F, Costa P, De Giuli V, et al. Subarachnoid extension predicts lobar intracerebral hemorrhage expansion. Stroke. 2020;51(5):1470–6. https://doi.org/10.1161/STROKEAHA.119.028338.

    Article  PubMed  Google Scholar 

  64. Boulouis G, van Etten ES, Charidimou A, Auriel E, Morotti A, Pasi M, et al. Association of key magnetic resonance imaging markers of cerebral small vessel disease with hematoma volume and expansion in patients with lobar and deep intracerebral hemorrhage. JAMA Neurol. 2016;73(12):1440–7. https://doi.org/10.1001/jamaneurol.2016.2619.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rodrigues MA, Samarasekera N, Lerpiniere C, Humphreys C, McCarron MO, White PM, et al. The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study. Lancet Neurol. 2018;17(3):232–40. https://doi.org/10.1016/S1474-4422(18)30006-1.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Samarasekera N, Rodrigues MA, Toh PS, Al-Shahi R. Imaging features of intracerebral hemorrhage with cerebral amyloid angiopathy: systematic review and meta-analysis. PLoS One. 2017;12(7):e0180923. https://doi.org/10.1371/journal.pone.0180923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chu H, Huang C, Dong J, Yang X, Xiang J, Mao Y, et al. Minimal computed tomography attenuation value within the hematoma is associated with hematoma expansion and poor outcome in intracerebral hemorrhage patients. Neurocrit Care. 2019;31(3):455–65. https://doi.org/10.1007/s12028-019-00754-z.

    Article  CAS  PubMed  Google Scholar 

  68. Fisher CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol. 1971;30(3):536–50. https://doi.org/10.1097/00005072-197107000-00015.

    Article  CAS  PubMed  Google Scholar 

  69. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63. https://doi.org/10.1016/s1474-4422(05)70283-0.

    Article  PubMed  Google Scholar 

  70. Mayer SA, Lignelli A, Fink ME, Kessler DB, Thomas CE, Swarup R, et al. Perilesional blood flow and edema formation in acute intracerebral hemorrhage: a SPECT study. Stroke. 1998;29(9):1791–8. https://doi.org/10.1161/01.str.29.9.1791.

    Article  CAS  PubMed  Google Scholar 

  71. Al-Shahi Salman R, Frantzias J, Lee RJ, Lyden PD, Battey TWK, Ayres AM, et al. Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. Lancet Neurol. 2018;17(10):885–94. https://doi.org/10.1016/S1474-4422(18)30253-9This study was the largest patient-level meta-analysis to investigate the absolute risk and predictors of HE and developed useful prediction models.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Brott T, Broderick J, Kothari R, Barsan W, Tomsick T, Sauerbeck L, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28(1):1–5. https://doi.org/10.1161/01.str.28.1.1.

    Article  CAS  PubMed  Google Scholar 

  73. Kazui S, Naritomi H, Yamamoto H, Sawada T, Yamaguchi T. Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke. 1996;27(10):1783–7. https://doi.org/10.1161/01.str.27.10.1783.

    Article  CAS  PubMed  Google Scholar 

  74. Mayer SA, Davis SM, Skolnick BE, Brun NC, Begtrup K, Broderick JP, et al. Can a subset of intracerebral hemorrhage patients benefit from hemostatic therapy with recombinant activated factor VII? Stroke. 2009;40(3):833–40. https://doi.org/10.1161/STROKEAHA.108.524470This study found a subgroup of patients who were treated early may benefit from hemostatic therapy with recombinant activated factor VII.

    Article  CAS  PubMed  Google Scholar 

  75. Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008;358(20):2127–37. https://doi.org/10.1056/NEJMoa0707534.

    Article  CAS  PubMed  Google Scholar 

  76. Li Q, Warren AD, Qureshi AI, Morotti A, Falcone GJ, Sheth KN, et al. Ultra-early blood pressure reduction attenuates hematoma growth and improves outcome in intracerebral hemorrhage. Ann Neurol. 2020. https://doi.org/10.1002/ana.25793This study found that patients who received intensive blood pressure reduction within 2 h is less likely to experience hematoma growth and more likely to achieve functional independence and good outcome.

  77. Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane K, McBee N, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet. 2019;393(10175):1021–32. https://doi.org/10.1016/S0140-6736(19)30195-3This study reported that MISTIE did not improve the primary outcome in proportion of ICH patients. The procedure was safely adopted by newly trained neurosurgeons.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Shen Z, Wang L, Wu G, Li Q, Ren S, Mao Y. Computed tomographic black hole sign predicts postoperative rehemorrhage in patients with spontaneous intracranial hemorrhage following stereotactic minimally invasive surgery. World Neurosurg. 2018;120:e153–60. https://doi.org/10.1016/j.wneu.2018.07.256.

    Article  PubMed  Google Scholar 

  79. Wang L, Zhang L, Mao Y, Li Y, Wu G, Li Q. Regular-shaped hematomas predict a favorable outcome in patients with hypertensive intracerebral hemorrhage following stereotactic minimally invasive surgery. Neurocrit Care. 2020. https://doi.org/10.1007/s12028-020-00996-2.

  80. Morotti A, Boulouis G, Dowlatshahi D, Li Q, Barras CD, Delcourt C, et al. Standards for detecting, interpreting, and reporting noncontrast computed tomographic markers of intracerebral hemorrhage expansion. Ann Neurol. 2019;86(4):480–92. https://doi.org/10.1002/ana.25563This study proposed clear systematic standards for detecting, interpreting, and reporting NCCT predictors of HE in future research studies and clinical practice.

    Article  PubMed  Google Scholar 

  81. Kuo W, Hӓne C, Mukherjee P, Malik J, Yuh EL. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc Natl Acad Sci U S A. 2019;116(45):22737–45. https://doi.org/10.1073/pnas.1908021116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mouridsen K, Thurner P, Zaharchuk G. Artificial intelligence applications in stroke. Stroke. 2020;51:2573–9. https://doi.org/10.1161/STROKEAHA.119.027479. Epub ahead of print.

    Article  PubMed  Google Scholar 

  83. Al-Mufti F, Kim M, Dodson V, Sursal T, Bowers C, Cole C, et al. Machine learning and artificial intelligence in neurocritical care: a specialty-wide disruptive transformation or a strategy for success. Curr Neurol Neurosci Rep. 2019;19(11):89. https://doi.org/10.1007/s11910-019-0998-8The authors demonstrated that machine learning and artificial intelligence can detect early signs of neurological deterioration and have great potential for assisting physicians in neurocritical care.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Key R&D Program of China (No. 2018YFC1312200, No.2018YFC1312203) and the Chongqing High-end Young Investigator Project (No. 2019GDRC005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Wei or Qi Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This does not contain any studies with human or animal subjects performed by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Critical Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, XN., Deng, L., Yang, WS. et al. Computed Tomography Imaging Predictors of Intracerebral Hemorrhage Expansion. Curr Neurol Neurosci Rep 21, 22 (2021). https://doi.org/10.1007/s11910-021-01108-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-021-01108-z

Keywords

Navigation