Skip to main content
Log in

Charge Distribution in a Cloud Assessed from the Energetic Particle Flux Measured under the Cloud

  • PHYSICS OF ATMOSPHERE
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

An increase in the flux of energetic particles under thunderstorm clouds is a result of the multiplication and acceleration of particles of secondary cosmic rays in the electric field of the cloud. Study of the particle multiplication mechanisms requires an assessment of the electrical properties of clouds. In this paper, we propose a method for evaluating the electrical structure of a cloud that creates a flux of energetic particles. The developed technique for estimating the distribution of a charge in the cloud is based on the ground-based measurements of the electric field and energetic particle flux. The technique was used to study the clouds that create the descending fluxes of energetic particles observed at the Aragats Research Station. The characteristic charge distribution involves a two-layer structure with a charge density of 0.5–5 nC/m3 in the lower layer and –0.2…–3 nC/m3 in the upper layer. The total charges of the two charge regions are in the range of 1– 20 and –1…–30 C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. J. Fishman, et al., Science 264 (5163), 1313–1316 (1994).

    Article  Google Scholar 

  2. J. Dwyer, D. Smith, and S. Cummer, Space Sci. Rev. 173, 133–196 (2012).

    Article  Google Scholar 

  3. J. Dwyer, N. Liu, J. Grove, H. Rassoul, and D. Smith, J. Geophys. Res.: Space Phys. 122 (8) (2017).

  4. A. Chilingarian, J. Atmos. Sol.-Terr. Phys. 107, 68–76 (2014).

    Article  Google Scholar 

  5. A. Chilingarian, et al., Phys. Rev. Res. 1, 033167 (2019).

    Article  Google Scholar 

  6. A. V. Gurevich, G. M. Milikh, and R. A. Roussel-Dupré, Phys. Lett. A 165, 463–468 (1992).

    Article  Google Scholar 

  7. C. T. R. Wilson, Proc. Cambridge Philos. Soc. 22, 534–538 (1925).

    Article  Google Scholar 

  8. J. R. Dwyer and S. A. Cummer, JGR: Space Phys. 118, 3769–3790 (2013).

    Google Scholar 

  9. http://crd.yerphi.am/adei.

  10. E. K. Svechnikova, N. V. Ilin, and E. A. Mareev, Phys. Part. Nucl. Lett. 17 (6), 840–848 (2020).

    Article  Google Scholar 

  11. T. Marshall, W. Rison, W. Rust, M. Stolzenburg, J. Willett, and W. Winn, J. Geophys. Res. 100, 20815–20828 (1995).

    Article  Google Scholar 

  12. M. Stolzenburg, W. Rust, and T. Marshall, J. Geophys. Res. 1031, 14079–14096 (1998).

    Article  Google Scholar 

  13. V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (Cambridge Univ. Press, 2004), Chapter 3.

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-17-00218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Svechnikova.

Additional information

Translated by M. Hannibal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svechnikova, E.K., Ilin, N.V. & Mareev, E.A. Charge Distribution in a Cloud Assessed from the Energetic Particle Flux Measured under the Cloud. Dokl. Earth Sc. 496, 171–175 (2021). https://doi.org/10.1134/S1028334X21020197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X21020197

Keywords:

Navigation