Skip to main content
Log in

Design of a hybrid deep learning system for discriminating between low- and high-grade colorectal cancer lesions, using microscopy images of IHC stained for AIB1 expression biopsy material

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

To design a hybrid deep learning system (hDL-system) for discriminating low-grade from high-grade colorectal cancer (CRC) lesions, using immunohistochemically stained biopsy specimens for AIB1 expression. AIB1 has oncogenic function in tumour genesis, and it is an important prognostic factor regarding various types of cancers, including CRC. Clinical material consisted of biopsy specimens of sixty-seven patients with verified CRC (26 low-grade, 41 high-grade cases). From each patient, we digitized images, at × 50 and × 200 lens magnifications. We designed the hDL-system, employing the VGG16 pre-trained convolution neural network for generating DL-features, the SVM classifier, and the bootstrap evaluation method for assessing the discrimination accuracy between low-grade and high-grade CRC lesions. Furthermore, we compared the hDL-system’s discrimination accuracy with that of a supervised machine learning system (sML-system). We designed the sML-system by (i) generating sixty-nine (69) textural and colour features from each image, (ii) employing the probabilistic neural network (PNN) classifier, and (iii) using the bootstrapping method for evaluating sML-system performance. The system design was enabled by employing the CUDA platform for programming in parallel the multiprocessors of the Nvidia graphics processing unit card. The hDL-system provided the highest discrimination accuracy of 99.1% using the × 200 lens magnification images as compared to the 92.5.% best accuracy achieved by the sML-system, employing both the × 50 and × 200 lens magnification images. Our results showed that the hDL-system was superior to the sML-system (i) in discriminating low-grade from high-grade CRC-lesions and (ii) by requiring fewer images for its best design, only those at the × 200 lens magnification. The sML-system by employing textural and colour features in its design revealed that high-grade CRC lesions are characterized by (i) loss in the definition of structures, (ii) coarser texture in larger structures, (iii) hazy formless texture, (iv) lower AIB1 uptake, (v) lower local correlation and (vi) slower varying image contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AIB1:

Amplified in breast cancer 1

CART:

Classification and Regression Tree

CNN:

Convolutional Neural Network

CRC:

Colorectal cancer

DL:

Deep Learning

DSS:

Decision support system

H&E:

Haematoxylin & Eosin

HG_CRC:

High-grade Colorectal Lesion

IHC:

Immunohistochemistry

KNN:

K-Nearest Neighbour

LG_CRC:

Low-grade Colorectal Cancer

LDA:

Linear Discriminant Analysis

PNN:

Probabilistic Neural Network

RF:

Random Forest

SVM:

Support Vector Machines

hDL-system:

Hybrid Deep Learning System

sML-system:

Supervised Machine Learning System

CLR MedAD_Ch_a_x50:

Median Absolute Deviation of colour channel a

CLR MedV_Ch_a _x200:

Min Value of colour channel a

CLR MinV_Ch_b_x500:

Min Value of colour channel b

CLR RV_Ch_a_x500:

Range Values of colour channel a

CON _x200:

Contrast

DENT_x200:

Difference entropy

DVAR_x200:

Difference variance

ICM1_x200:

Information measure of correlation 1

IDM _x200:

Inverse different moment

Kurt_x500:

Kurtosis

LRE _x200:

Long run emphasis

RLNU_x50:

Run length non-uniformity

RP_x200:

Run percentage

SAV_x200:

Sum average

Skew_x200:

Skewness

dwt2D_MedV_x50:

Median Value of W in diagonal direction (where W is the 2nd level discrete wavelet transform):

dwt2H_MedV_x200:

Median Value of W in horizontal direction (where W is the 2nd level discrete wavelet transform)

References

  1. Siegel, R.L., Miller, K.D., Fedewa, S.A., Ahnen, D.J., Meester, R.G.S., Barzi, A., Jemal, A.: Colorectal cancer statistics, 2017. CA: a cancer journal for clinicians, 67(3):177–193 (2017)

  2. Kunhoth, S., Al Maadeed, S., Bouridane, A.: Medical and computing insights into colorectal tumors. Int. J. Life Sci. Biotech. Pharm. Res. 4(2), 122–126 (2015)

    Google Scholar 

  3. Phillips, R.K.S., Hittinger, R., Blesovsky, L., Fry, J.S., Fielding, L.P.: Large bowel cancer: Surgical pathology and its relationship to survival. Br. J. Surg. 71, 604–610 (1984)

    Article  Google Scholar 

  4. Freedman, L.S., Macaskill, P., Smith, A.N.: Multivariate analysis of prognostic factors for operable rectal cancer. Lancet 2(8405), 733–736 (1984)

    Article  Google Scholar 

  5. Jass, J.R., Atkin, W.S., Cuzick, J., Bussey, H.J., Morson, B.C., Northover, J.M., Todd, I.P.: The grading of rectal cancer: historical perspectives and a multivariate analysis of 447 cases. Histopathology 41(3A), 59–81 (2002)

    Google Scholar 

  6. Thomas, G.D., Dixon, M.F., Smeeton, N.C., Williams, N.S.: Observer variation in the histological grading of rectal carcinoma. J. Clin. Pathol. 36(4), 385–391 (1983)

    Article  Google Scholar 

  7. Andrion, A., Magnani, C., Betta, P.G., Donna, A., Mollo, F., Scelsi, M., Bernardi, P., Botta, M., Terracini, B.: Malignant mesothelioma of the pleura: interobserver variability. J. Clin. Pathol. 48(9), 856–860 (1995)

    Article  Google Scholar 

  8. Rathore, S., Hussain, M., Ali, A., Khan, A.: A recent survey on colon cancer detection techniques. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(3), 545–563 (2013)

    Article  Google Scholar 

  9. Turner, J.K., Williams, G.T., Morgan, M., Wright, M., Dolwani, S.: Interobserver agreement in the reporting of colorectal polyp pathology among bowel cancer screening pathologists in Wales. Histopathology 62(6), 916–924 (2013)

    Article  Google Scholar 

  10. Blenkinsopp, W.K., Stewart-Brown, S., Blesovsky, L., Kearney, G., Fielding, L.P.: Histopathology reporting in large bowel cancer. J. Clin. Pathol. 34(5), 509–513 (1981)

    Article  Google Scholar 

  11. Allen, D.C., Hamilton, P.W., Watt, P.C., Biggart, J.D.: Morphometrical analysis in ulcerative colitis with dysplasia and carcinoma. Histopathology 11(9), 913–926 (1987)

    Article  Google Scholar 

  12. Hamilton, P.W., Allen, D.C., Watt, P.C., Patterson, C.C., Biggart, J.D.: Classification of normal colorectal mucosa and adenocarcinoma by morphometry. Histopathology 11(9), 901–911 (1987)

    Article  Google Scholar 

  13. Allen, D.C., Hamilton, P.W., Watt, P.C., Biggart, J.D.: Architectural morphometry in ulcerative colitis with dysplasia. Histopathology 12(6), 611–621 (1988)

    Article  Google Scholar 

  14. Hamilton, P.W., Allen, D.C., Watt, P.C.: A combination of cytological and architectural morphometry in assessing regenerative hyperplasia and dysplasia in ulcerative colitis. Histopathology 17(1), 59–68 (1990)

    Article  Google Scholar 

  15. Hamilton, P.W., Bartels, P.H., Thompson, D., Anderson, N.H., Montironi, R., Sloan, J.M.: Automated location of dysplastic fields in colorectal histology using image texture analysis. J. Pathol. 182(1), 68–75 (1997)

    Article  Google Scholar 

  16. Esgiar, A.N., Naguib, R.N., Sharif, B.S., Bennett, M.K., Murray, A.: Fractal analysis in the detection of colonic cancer images. IEEE Trans. Inf. Technol. Biomed. Publ. IEEE Eng. Med. Biol. Soc. 6(1), 54–58 (2002)

    Article  Google Scholar 

  17. Ficsor, L., Varga, V.S., Tagscherer, A., Tulassay, Z., Molnar, B.: Automated classification of inflammation in colon histological sections based on digital microscopy and advanced image analysis. Cytometry Part A J. Int. Soc. Anal. Cytol 73(3), 230–237 (2008)

    Article  Google Scholar 

  18. Masood, K., Rajpoot, N.: Texture based classification of hyperspectral colon biopsy samples using CLBP. In: Proceedings of International Symposiumon Biomedical Imaging: From Nano to Macro, Boston 2009. Pp. 1011–1014 (2009)

  19. Kalkan, H., Nap, M., Duin, R. P., Loog, M.: Automated classification of local patches in colon histopathology. In: 21st Int’l Conf. Pattern Recognition, pp. 61–64 (2012).

  20. Jiao, L., Chen, Q., Li, S.: Xu Y Colon cancer detection using whole slide histopathological images. In: World Congress on Medical Physics and Biomedical Engineering, pp. 1283–1286. Springer, Berlin Heidelberg (2013)

    Google Scholar 

  21. Rathore, S., Hussain, M., Aksam Iftikhar, M., Jalil, A.: Ensemble classification of colon biopsy images based on information rich hybrid features. Comput. Biol. Med. 47, 76–92 (2014)

    Article  Google Scholar 

  22. Xu, Y., Mo, T., Feng, Q., Zhong, P., Lai, M., EI-C C Deep learning of feature representation with multiple instance learning for medical image analysis. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1626–1630 (2014).

  23. Kumar, R., Srivastava, R., Srivastava, S.: Detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features. J. Med. Eng. 2015, 457906 (2015)

    Article  Google Scholar 

  24. Rathore, S., Hussain, M., Khan, A.: Automated colon cancer detection using hybrid of novel geometric features and some traditional features. Comput. Biol. Med. 65, 279–296 (2015)

    Article  Google Scholar 

  25. Chaddad, A., Desrosiers, C., Bouridane, A., Toews, M., Hassan, L., Tanougast, C.: Multi texture analysis of colorectal cancer continuum using multispectral imagery. PLoS ONE 11(2), 1–17 (2016)

    Article  Google Scholar 

  26. Kather, J.N., Weis, C.A., Bianconi, F., Melchers, S.M., Schad, L.R., Gaiser, T., Marx, A., Zollner, F.G.: Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 6, 27988 (2016)

    Article  Google Scholar 

  27. Chaddad, A., Tanougast, C.: Texture analysis of abnormal cell images for predicting the continuum of colorectal cancer. Anal. Cell. Pathol. 2017, 8428102 (2017)

    Article  Google Scholar 

  28. Awan, R., Sirinukunwattana, K., Epstein, D., Jefferyes, S., Qidwai, U., Aftab, Z., Mujeeb, I., Snead, D., Rajpoot, N.: Glandular morphometrics for objective grading of colorectal adenocarcinoma histology images. Scientific reports 7(1), 16852 (2017)

    Article  Google Scholar 

  29. Peyret, R., Bouridane, A., Khelifi, F., M. Atif Tahir b, Al-Maadeed S, : Automatic classification of colorectal and prostatic histologic tumor images using multiscale multispectral local binary pattern texture features and stacked generalization. Neurocomputing 275, 83–93 (2018)

    Article  Google Scholar 

  30. Pacal, I., Karaboga, D., Basturk, A., Akay, B., Nalbantoglu, U.: A comprehensive review of deep learning in colon cancer. Comput. Biol. Med. 126, 104003 (2020)

    Article  Google Scholar 

  31. Shaban, M., Awan, R., Fraz, M.M., Azam, A., Tsang, Y.W., Snead, D., Rajpoot, N.M.: Context-Aware Convolutional Neural Network for Grading of Colorectal Cancer Histology Images. IEEE Trans. Med. Imaging 39(7), 2395–2405 (2020)

    Article  Google Scholar 

  32. Zhou, Y., Graham, S., Alemi Koohbanani, N., Shaban, M., Heng, P.A., Rajpoot, N.: CGC-net: Cell graph convolutional network for grading of colorectal cancer histology images. In: Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019, 2019. pp. 388–398.

  33. Anzick, S.L., Kononen, J., Walker, R.L., Azorsa, D.O., Tanner, M.M., Guan, X.Y., Sauter, G., Kallioniemi, O.P., Trent, J.M., Meltzer, P.S.: AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277(5328), 965–968 (1997)

    Article  Google Scholar 

  34. Ghadimi, B.M., Schrock, E., Walker, R.L., Wangsa, D., Jauho, A., Meltzer, P.S., Ried, T.: Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas. Am. J. Pathol. 154(2), 525–536 (1999)

    Article  Google Scholar 

  35. Sakakura, C., Hagiwara, A., Yasuoka, R., Fujita, Y., Nakanishi, M., Masuda, K., Kimura, A., Nakamura, Y., Inazawa, J., Abe, T., Yamagishi, H.: Amplification and over-expression of the AIB1 nuclear receptor co-activator gene in primary gastric cancers. Int. J. Cancer 89(3), 217–223 (2000)

    Article  Google Scholar 

  36. Wang, Y., Wu, M.C., Sham, J.S., Zhang, W., Wu, W.Q., Guan, X.Y.: Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer 95(11), 2346–2352 (2002)

    Article  Google Scholar 

  37. Xie, D., Sham, J.S., Zeng, W.F., Lin, H.L., Bi, J., Che, L.H., Hu, L., Zeng, Y.X., Guan, X.Y.: Correlation of AIB1 overexpression with advanced clinical stage of human colorectal carcinoma. Hum. Pathol. 36(7), 777–783 (2005)

    Article  Google Scholar 

  38. Xu, F.P., Xie, D., Wen, J.M., Wu, H.X., Liu, Y.D., Bi, J., Lv, Z.L., Zeng, Y.X., Guan, X.Y.: SRC-3/AIB1 protein and gene amplification levels in human esophageal squamous cell carcinomas. Cancer Lett. 245(1–2), 69–74 (2007)

    Article  Google Scholar 

  39. Liu, M.Z., Xie, D., Mai, S.J., Tong, Z.T., Shao, J.Y., Fu, Y.S., Xia, W.J., Kung, H.F., Guan, X.Y., Zeng, Y.X.: Overexpression of AIB1 in nasopharyngeal carcinomas correlates closely with advanced tumor stage. Am. J. Clin. Pathol. 129(5), 728–734 (2008)

    Article  Google Scholar 

  40. Tzelepi, V., Grivas, P., Kefalopoulou, Z., Kalofonos, H., Varakis, J.N., Melachrinou, M., Sotiropoulou-Bonikou, G.: Estrogen signaling in colorectal carcinoma microenvironment: expression of ERbeta1, AIB-1, and TIF-2 is upregulated in cancer-associated myofibroblasts and correlates with disease progression. Virchows Archiv Int. J. Pathol. 454(4), 389–399 (2009)

    Article  Google Scholar 

  41. Chen, L., Wang, C., Zhang, X., Gao, K., Liu, R., Shi, B., Hou, P.: AIB1 Genomic Amplification Predicts Poor Clinical Outcomes in Female Glioma Patients. J. Cancer 7(14), 2052–2060 (2016)

    Article  Google Scholar 

  42. Theodosi, A., Glotsos, D., Kostopoulos, S., Kalatzis, I., Tzelepi, V., Ravazoula, P., Asvestas, P., Cavouras, D., Sakellaropoulos, G.: Correlating Changes in the Epithelial Gland Tissue With Advancing Colorectal Cancer Histologic Grade, Using IHC Stained for AIB1 Expression Biopsy Material. Appl Immunohistochem Mol Morphol AIMM (2018)

  43. Greene, F.L.: AJCC Cancer Staging Manual. Springer, New York (2002)

    Book  Google Scholar 

  44. Xu, Y., Jia, Z., Wang, L.B., Ai, Y., Zhang, F., Lai, M., Chang, E.I.: Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinf 18(1), 281 (2017)

    Article  Google Scholar 

  45. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015).

  46. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for Cancer classification using support vector machines. Mach. Learn. 46(1), 389–422 (2002)

    Article  MATH  Google Scholar 

  47. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  48. Galloway, M.M.: Texture analysis using grey level run lengths. Comput. Graph. Image Process. 4, 172–179 (1975)

    Article  Google Scholar 

  49. H. Tamura SM, and T. Yamawaki: Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8(6), 460–473 (1978)

    Article  Google Scholar 

  50. Specht, D.: Probabilistic neural networks. Neural Netw. 3, 109–118 (1990)

    Article  Google Scholar 

  51. Theodoridis, S., Pikrakis, A., Koutroumbas, K., Cavouras, D.: An Introduction to Pattern Recognition: A Matlab Approach. Academic Press, Oxford (2010)

    Google Scholar 

  52. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 2nd edn. Elsevier, San Diego (2003)

    MATH  Google Scholar 

  53. Foley, D.: Considerations of sample and feature size. IEEE Trans. Inf. Theory 18(5), 618–626 (1972)

    Article  MATH  Google Scholar 

  54. Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. Natl. Acad. Sci. U.S.A. 99(10), 6562–6566 (2002)

    Article  MATH  Google Scholar 

  55. Sidiropoulos, K., Glotsos, D., Kostopoulos, S., Ravazoula, P., Kalatzis, I., Cavouras, D., Stonham, J.: Real time decision support system for diagnosis of rare cancers, trained in parallel, on a graphics processing unit. Comput. Biol. Med. 42(4), 376–386 (2012)

    Article  Google Scholar 

  56. Esgiar, A.N., Naguib, R.N., Bennett, M.K., Murray, A.: Automated feature extraction and identification of colon carcinoma. Anal. Quant. Cytol. Histol. 20(4), 297–301 (1998)

    Google Scholar 

  57. Cheng, H.D., Sun, Y.: A Hierarchical Approach to Color Image Segmentation Using Homogeneity. IEEE Trans. Image Process. 9(12), 2071–2082 (2000)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Department of Pathology of the University Hospital of Patras, Greece, for supplying the IHC stained for AIB1 expression material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spiros Kostopoulos.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

The mathematical formulations of the eight (8) best-features combination of the sML-system design are presented below.

Α.1 Histogram feature

  1. (1)

    Kurtosis (Kurt)

$$ Kurt = \frac{1}{N}\frac{{\sum\nolimits_{i} {\sum\nolimits_{j} {(g(i,j) - m)^{4} } } }}{{std^{4} }} $$

where g(i,j) is the pixel intensity in position (i,j), N the total number of pixels, m is the mean value of the g, and std is the standard deviation of g.

Α.2 Co-occurrence matrix based features

  1. (2)

    Sum average (SAV)

$$ SAV = \sum\limits_{i = 2}^{{2N_{g} }} {ip_{x + y} (i)} $$

where Ng is the number of gray levels in the image, i,j = 1,…,Ng, and p(i,j) is the co-occurrence matrix, and px+y is \(p_{x + y} (k) = \sum\limits_{i = 1}^{{N_{g} }} {\sum\limits_{j = 1}^{{N_{g} }} {p(i,j),i + j = k,k = 2,3,...,2N_{g} } }\).

  1. (3)

    Difference variance(DVAR)

$$ DVAR = \sum\limits_{i = 2}^{{2N_{g} }} {(i - SAV)^{2} p_{x - y} (i)} $$

where px-y is \(p_{x - y} (k) = \sum\limits_{i = 1}^{{N_{g} }} {\sum\limits_{j = 1}^{{N_{g} }} {p(i,j),|i - j| = k,k = 2,3,...,N_{g} - 1} }\).

  1. (4)

    Difference entropy (DENT)

$$ DENT = - \sum\limits_{i = 0}^{{N_{g} - 1}} {p_{x - y} (i)} \log \left( {p_{x - y} (i)} \right) $$
  1. (5)

    Information measure of correlation 1 (ICM1)

    $$ ICM1 = \frac{HXY - HXY1}{{\max \left\{ {HX,HY} \right\}}} $$

where \(HXY = - \sum\limits_{i = 0}^{{N_{g} - 1}} {\sum\limits_{j = 0}^{{N_{g} - 1}} {p(i,j)\log \left( {p(i,j)} \right)} }\)

$$ HXY1 = - \sum\limits_{i = 0}^{{N_{g} - 1}} {\sum\limits_{j = 0}^{{N_{g} - 1}} {p(i,j)\log \left( {p_{x} (i)p_{y} (j)} \right)} } $$

Α.4 Wavelet based feature

  1. (6)

    Median Value of the 2nd level discrete wavelet transform in the horizontal direction (dwt2H_MedV).

The discrete wavelet function of an image \(f\left(x,y\right)\) of size M x N is defined as:

$$ W_{\varphi } \left( {j_{0} ,m,n} \right) = \frac{1}{{\sqrt {MN} }}\mathop \sum \limits_{x = 0}^{M - 1} \mathop \sum \limits_{y = 0}^{N - 1} f\left( {x,y} \right)\varphi_{{j_{0} ,m,n}} \left( {x,y} \right) $$
$$ W_{\psi }^{i} \left( {j,m,n} \right) = \frac{1}{{\sqrt {MN} }}\mathop \sum \limits_{x = 0}^{M - 1} \mathop \sum \limits_{y = 0}^{N - 1} f\left( {x,y} \right)\psi_{j,m,n}^{i} \left( {x,y} \right) $$
$$ i = \left\{ {H,V,D} \right\} $$

where \(\varphi \left( {x,y} \right)\) is a scaling function, with j = 0,1,2…

\(W_{\varphi }\) are the coefficients define an approximation of image \(f\left( {x,y} \right)\) at level (scale) j0.

and \(W_{\psi }\) are the coefficients that add horizontal, vertical and diagonal details for levels j ≥ j0.

Α.5 Tamura-based features

  1. (7)

    Tamura coarseness 4

$$ F_{crs} = \frac{1}{m \times n}\sum\limits_{i}^{m} {\sum\limits_{j}^{n} {S_{{{\text{best}}}} (i,j)} } $$

where m, n are region dimensions and

$$ S_{best} (i,j) = 2^{k} $$

where k is the best scaling for highest neighborhood average.

The particular feature is the value of the 3rd bin histogram of Sbest .

Α.6 Lab colour transform-based features

  1. (8)

    Median Value of colour channel a* (CLR MedV_Ch_a)

According to the CIE, the coordinates of the Lab colour space are derived by a nonlinear transformation of the three primary colours X, Y and Z. The linear transformation of RGB space to X, Y and Z is defined as [57]

$$ \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} X \\ Y \\ \end{array} } \\ Z \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} {0.607} \\ {0.299} \\ \end{array} } \\ {0.000} \\ \end{array} \begin{array}{*{20}c} { \begin{array}{*{20}c} {0.174} \\ {0.587} \\ \end{array} } \\ {0.066} \\ \end{array} \begin{array}{*{20}c} {\begin{array}{*{20}c} {0.200} \\ {0.114} \\ \end{array} } \\ {1.116} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} R \\ G \\ \end{array} } \\ B \\ \end{array} } \right) $$
$$ L* = 116\left( {\sqrt[3]{{\frac{Y}{{Y_{0} }}}}} \right) - 16 $$
$$ a* = 500\left[ {\sqrt[3]{{\frac{X}{{X_{0} }}}} - \sqrt[3]{{\frac{Y}{{Y_{0} }}}}} \right] $$
$$ b* = 200\left[ {\sqrt[3]{{\frac{Y}{{Y_{0} }}}} - \sqrt[3]{{\frac{Z}{{Z_{0} }}}}} \right] $$

where Ch_x is the *a channel of L*a*b colour transform.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theodosi, A., Ouzounis, S., Kostopoulos, S. et al. Design of a hybrid deep learning system for discriminating between low- and high-grade colorectal cancer lesions, using microscopy images of IHC stained for AIB1 expression biopsy material. Machine Vision and Applications 32, 58 (2021). https://doi.org/10.1007/s00138-021-01184-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-021-01184-8

Keywords

Navigation