Skip to main content

Advertisement

Log in

Estimating the maximum earthquake magnitude in the Iranian Plateau

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The Iranian Plateau has been subjected to destructive earthquakes throughout its history. Reliable assessment of the seismic hazard in this earthquake-prone region is therefore essential. Our study focuses on estimating the maximum earthquake magnitude as one of the main parameters of seismic hazard analysis. We implemented two quantitative approaches, namely, probabilistic and deterministic. The probabilistic method allows combining the historical (i.e. incomplete) and the instrumental parts of a catalogue with different levels of completeness and considers the uncertainties in earthquake magnitude determination. In this study, we used a unified, declustered, and complete catalogue of earthquakes in Iran, covering the period from the fourth century BC to 2019. We calculated the maximum possible magnitudes for hundreds of grid points by using the seismicity data in a 200-km radial region around each grid point. The maximum possible earthquake was observed to vary between 6.0 and 8.2, and the highest values were found in the Alborz-Azarbayejan seismotectonic province, Kopeh-Dagh, central east Iran, Makran, and the southeast Zagros. The lowest mmax values were found in the Persian Gulf, Arabian Platform, Esfahan-Sirjan region, and the Dasht-e-Kavir Desert in central Iran. As a second part to this study, we calculated the maximum credible earthquakes for 1103 identified major faults by using five empirical magnitude-scaling relationships. Our results were consistent with both the observed earthquakes and the seismic potential of the various seismogenic zones of Iran. The study results can be used in future seismic hazard analyses and have fundamental implications for mitigating seismic risk in Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abrahamson NA (2006) Seismic hazard assessment: problems with current practice and future developments. In First European Conference on Earthquake Engineering and Seismology. 3–8 September, Geneva, Switzerland. 

  • Abrahamson NA, Bommer JJ (2005) Probability and uncertainty in seismic hazard analysis. Earthquake Spectra 21(2):603–607

    Article  Google Scholar 

  • Ambraseys NN (2001) Reassessment of earthquakes, 1900–1999, in the Eastern Mediterranean and the Middle East. Geophys J Int 145(2):471–485

    Article  Google Scholar 

  • Ambraseys NN, Melville CP (2005) A history of Persian earthquakes. Cambridge University Press, Cambridge, UK, 240 pp.

  • Anderson JG, Wesnousky SG, Stirling MW (1996) Earthquake size as a function of fault slip rate. Bull Seismol Soc Am 86(3):683–690

    Google Scholar 

  • Anderson JG, Biasi GP, Wesnousky SG (2017) Fault-scaling relationships depend on the average fault-slip rate. Bull Seismol Soc Am 107(6):2561–2577

    Article  Google Scholar 

  • Bastami M, Kowsari M (2014) Seismicity and seismic hazard assessment for greater Tehran region using Gumbel first asymptotic distribution. Struct Eng Mech 49(3):355–372

    Article  Google Scholar 

  • Benjamin JR (1968) Probabilistic models for seismic force design. J Struct Div 94(5):1175–1196

    Article  Google Scholar 

  • Benjamin JR, Cornell CA(1970) Solutions manual to accompany probability, statistics, and decision for civil engineers. McGraw-Hill

  • Berberian M (1976a) Documented earthquake faults in Iran. Geol. Surv. Iran 39:143–186

    Google Scholar 

  • Berberian M (1976b) Seismotectonic map of Iran, scale 1: 2 500 000. Contribution to the Seismotectonics of Iran (Part II), Geol. Surv. Iran, p. 516

  • Berberian M (1976c) Generalized fault map of Iran, scale 1:5 000 000. Contribution to the Seismotectonics of Iran (Part IV), Geol. Surv. Iran, p. 52

  • Berberian M (1995) Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241(3–4):193–224

    Article  Google Scholar 

  • Berberian M, Walker R (2010) The Rudbār Mw 7.3 earthquake of 1990 June 20; seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ‘High-Alborz’, Iran. Geophys J Int 182(3):1577–1602

    Article  Google Scholar 

  • Berberian M, Yeats RS (2001) Contribution of archaeological data to studies of earthquake history in the Iranian Plateau. J Struct Geol 23(2):563–584

    Article  Google Scholar 

  • Berberian M, Qorashi M, Arzhang-ravesh B, Mohajer Ashjaie A (1983) Recent tectonics, seismotectonics and earthquake-fault hazard investigation in the greater Tehran region: contribution to the seismotectonic of Iran, part V, Report No. 56. Geological Survey of Iran

  • Bommer JJ, Scherbaum F, Bungum H, Cotton F, Sabetta F, Abrahamson NA (2005) On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bull Seismol Soc Am 95(2):377–389

    Article  Google Scholar 

  • Byrne DE, Sykes LR, Davis DM (1992) Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. J Geophys Res Solid Earth 97(B1):449–478

    Article  Google Scholar 

  • Campbell KW (1982) Bayesian analysis of extreme earthquake occurrences. Part I. Probabilistic hazard model. Bull Seismol Soc Am 72(5):1689–1705

    Google Scholar 

  • Campbell KW (1983) Bayesian analysis of extreme earthquake occurrences. Part II. Application to the San Jacinto fault zone of southern California. Bull Seismol Soc Am 73(4):1099–1115

    Google Scholar 

  • Daykin CD, Pentikainen T, Pesonen M (1993) Practical risk theory for actuaries. Chapman and Hall/CRC, Taylor & Francis group, 576 pp.

  • Elliott JR, Bergman EA, Copley AC, Ghods AR, Nissen EK, Oveisi B, Tatar M, Walters RJ, Yamini-Fard F (2015) The 2013 Mw 6.2 Khaki-Shonbe (Iran) earthquake: insights into seismic and aseismic shortening of the Zagros sedimentary cover. Earth and Space Science 2(11):435–471

    Article  Google Scholar 

  • Engdahl ER, Jackson JA, Myers SC, Bergman EA, Priestley K (2006) Relocation and assessment of seismicity in the Iran region. Geophys J Int 167(2):761–778

    Article  Google Scholar 

  • Field EH, Jackson DD, Dolan JF (1999) A mutually consistent seismic-hazard source model for southern California. Bull Seismol Soc Am 89(3):559–578

    Article  Google Scholar 

  • Gasperini P, Lolli B, Vannucci G (2013) Empirical calibration of local magnitude data sets versus moment magnitude in Italy. Bull Seismol Soc Am 103(4):2227–2246

    Article  Google Scholar 

  • Ghassemi MR (2016) Surface ruptures of the Iranian earthquakes 1900–2014: Insights for earthquake fault rupture hazards and empirical relationships. Earth Sci Rev 156:1–13

    Article  Google Scholar 

  • Grünthal G, Wahlström R, Stromeyer D (2009) The unified catalogue of earthquakes in central, northern, and northwestern Europe (CENEC)—updated and expanded to the last millennium. J Seismol 13(4):517–541

    Article  Google Scholar 

  • Hamada MS, Wilson A, Reese CS, Martz H (2008) Bayesian reliability. Springer Science & Business Media, ISSN 0172–7397, pp 436

  • Hanks TC, Bakun WH (2002) A bilinear source-scaling model for M-log A observations of continental earthquakes. Bull Seismol Soc Am 92(5):1841–1846

    Article  Google Scholar 

  • Heidarzadeh M, Kijko A (2011) A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Nat Hazards 56(3):577–593

    Article  Google Scholar 

  • Hessami K, Jamali F (2006) Explanatory notes to the map of major active faults of Iran. J Seismol Earthq Eng 8(1):1–11

    Google Scholar 

  • Hessami K, Jamali F, Tabassi H (2003) Major active faults of Iran, scale 1:2500000. International Institute of Earthquake Engineering and Seismology, Tehran

    Google Scholar 

  • Hollingsworth J, Jackson J, Walker R, Reza Gheitanchi M, Javad Bolourchi M (2006) Strike-slip faulting, rotation, and along-strike elongation in the Kopeh Dagh mountains, NE Iran. Geophys J Int 166(3):1161–1177

    Article  Google Scholar 

  • Jackson J, McKenzie D (1984) Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan. Geophys J Int 77(1):185–264

    Article  Google Scholar 

  • Jackson J, McKenzie D (1988) The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophys J Int 93(1):45–73

    Article  Google Scholar 

  • Javadi HR, Sheikholeslami MR, Asadi Sarhar M (2013) Iran Fault Map on Sedimentary-Structural Units. Scale, 1:1000000. Geological Survey of Iran

  • Kalaneh S, Agh-Atabai M (2016) Spatial variation of earthquake hazard parameters in the Zagros fold and thrust belt, SW Iran. Nat Hazards 82(2):933–946

    Article  Google Scholar 

  • Karimiparidari S, Zaré M, Memarian H, Kijko A (2013) Iranian earthquakes, a uniform catalog with moment magnitudes. J Seismol 17(3):897–911

    Article  Google Scholar 

  • Khodaverdian A, Zafarani H, Rahimian M, Dehnamaki V (2016) Seismicity parameters and spatially smoothed seismicity model for Iran. Bull Seismol Soc Am 106(3):1133–1150

    Article  Google Scholar 

  • Kijko A (2004) Estimation of the maximum earthquake magnitude, m max. Pure Appl Geophys 161(8):1655–1681

    Article  Google Scholar 

  • Kijko A, Sellevoll MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79(3):645–654

    Article  Google Scholar 

  • Kijko A, Sellevoll MA (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seismol Soc Am 82(1):120–134

    Google Scholar 

  • Kijko A, Singh M (2011) Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophysica 59(4):674–700

    Article  Google Scholar 

  • Kijko A, Smit A, Sellevoll MA (2016) Estimation of earthquake hazard parameters from incomplete data files. Part III. Incorporation of Uncertainty of Earthquake-Occurrence Model. Bull Seismol Soc Am 106(3):1210–1222

    Article  Google Scholar 

  • Klügel JU (2008) Seismic hazard analysis—Quo Vadis? Earth Sci Rev 88(1):1–32

    Article  Google Scholar 

  • Klügel JU, Mualchin L, Panza GF (2006) A scenario-based procedure for seismic risk analysis. Eng Geol 88(1):1–22

    Article  Google Scholar 

  • Klugman SA, Panjer HH, Willmot, GE (2012) Loss models: from data to decisions. John Wiley & Sons Inc., Hoboken, New Jersey, 784 pp.

  • Kowsari M, Halldorsson B, Jonsson S, Olafsson S, Rupakhety R(2017) On maximum earthquake scenarios of the Tjornes Fracture Zone, North Iceland for seismic hazard assessment. In 16th World Conference on Earthquake Engineering (16WCEE), 9-13 January, Santiago, Chile (Paper no. 2776). 

  • Kowsari M, Eftekhari N, Kijko A, Dadras EY, Ghazi H, Shabani E (2019) Quantifying seismicity parameter uncertainties and their effects on probabilistic seismic hazard analysis: a case study of Iran. Pure Appl Geophys 176(4):1487–1502

    Article  Google Scholar 

  • Leonard M (2010) Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bull Seismol Soc Am 100(5A):1971–1988

    Article  Google Scholar 

  • Mahsuli M, Rahimi H, Bakhshi A (2019) Probabilistic seismic hazard analysis of Iran using reliability methods. Bull Earthq Eng 17(3):1117–1143

    Article  Google Scholar 

  • McQuarrie N, van Hinsbergen DJ (2013) Retrodeforming the Arabia-Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41(3):315–318

    Article  Google Scholar 

  • Mirzaei N, Gao M, Chen YT (1997a) Evaluation of uncertainty of earthquake parameters for the purpose of seismic zoning of Iran. Earthq Res China 11:197–212

    Google Scholar 

  • Mirzaei N, Gao M, Chen YT (1997b) Seismicity in major seismotectonic provinces of Iran. Earthq Res China, 11(4): 351–360

  • Mirzaei N, Mengtan G, Yuntai C (1998) Seismic source regionalization for seismic zoning of Iran: Major seismotectonic provinces. J Earthq Prediction Res 7:465–495

    Google Scholar 

  • Mirzaei N, Gao M, Chen Y (1999) Delineation of potential seismic sources for seismic zoning of Iran. J Seismol 3(1):17–30

    Article  Google Scholar 

  • Mohammadi H, Türker T, Bayrak Y (2016) A quantitative appraisal of earthquake hazard parameters evaluated from bayesian approach for different regions in Iranian Plateau. Pure Appl Geophys 173(6):1971–1991

    Article  Google Scholar 

  • Motagh M, Bahroudi A, Haghighi MH, Samsonov S, Fielding E, Wetzel H-U (2015) The 18 August 2014 M w 6.2 Mormori, Iran, earthquake: a thin-skinned faulting in the Zagros Mountain inferred from InSAR measurements. Seismol Res Letters 86(3):775–782

    Article  Google Scholar 

  • Mousavi-Bafrouei SH, Mahani AB (2020) A comprehensive earthquake catalogue for the Iranian Plateau (400 BC to December 31, 2018). J Seismol. 24:709–724. https://doi.org/10.1007/s10950-020-09923-6

    Article  Google Scholar 

  • Mouthereau F, Lacombe O, Vergés J (2012) Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532:27–60

    Article  Google Scholar 

  • Musson RMW (2004) Design earthquakes in the UK. Bull Earthq Eng 2(1):101–112

    Article  Google Scholar 

  • Musson RMW (2012) The effect of magnitude uncertainty on earthquake activity rates. Bull Seismol Soc America 102(6):2771–2775

    Article  Google Scholar 

  • Nissen E, Tatar M, Jackson JA, Allen MB (2011) New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophys J Int 186(3):928–944

    Article  Google Scholar 

  • Nissen E, Ghods A, Karasözen E, Elliott JR, Barnhart WD, Bergman EA et al (2019) The 12 November 2017 M w 7.3 Ezgeleh-Sarpolzahab (Iran) Earthquake and active tectonics of the Lurestan Arc. J Geophys Res Sol Earth 124(2):2124–2152

    Article  Google Scholar 

  • Nogole-Sadat MAA, Almasian M (1993) Tectonic map of Iran, scale 1: 1000, 000. Geological Survey of Iran, Tehran

    Google Scholar 

  • Nowroozi AA (1976) Seismotectonic provinces of Iran. Bull Seismol Soc America 66(4):1249–1276

    Google Scholar 

  • Nowroozi AA (1985) Empirical relations between magnitudes and fault parameters for earthquakes in Iran. Bull Seismol Soc Am 75(5):1327–1338

    Google Scholar 

  • Nowroozi AA (2010) Probability of peak ground horizontal and peak ground vertical accelerations at Tehran and surrounding areas. Pure Appl Geophys 167(12):1459–1474

    Article  Google Scholar 

  • Reiter L (1991) Earthquake hazard analysis: issues and insights. Columbia University Press, New York, pp 254

  • Shaw BE (2009) Constant stress drop from small to great earthquakes in magnitude-area scaling. J Seismol Soc Am 99(2A):871–875

    Article  Google Scholar 

  • Shaw BE (2013) Earthquake Surface Slip-Length Data is Fit by Constant Stress Drop and is Useful for Seismic Hazard Analysis. Bull Seismol Soc Am 103(2A):876–893

    Article  Google Scholar 

  • Smit A, Stein A, Kijko A (2019) Bayesian inference in natural hazard analysis for incomplete and uncertain data. Environmetrics e2566, 1–16. https://doi.org/10.1002/env.2566

  • Somerville P, Moriwaki Y (2003) 65 Seismic hazards and risk assessment in engineering practice. Int Geophys 81:1065–1080

    Article  Google Scholar 

  • Somerville P, Irikura K, Graves R, Sawada S, Wald D, Abrahamson NA, … Kowada A (1999) Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismol Res Letters, 70:59–80

  • Stein RS, Hanks TC (1998) M≧ 6 earthquakes in southern California during the twentieth century: no evidence for a seismicity or moment deficit. Bull Seismol Soc Am 88(3):635–652

    Article  Google Scholar 

  • Stocklin J (1968) Structural history and tectonics of Iran: a review. AAPG Bull 52(7):1229–1258

    Google Scholar 

  • Takin M (1972) Iranian geology and continental drift in the Middle East. Nature 235:147–150

    Article  Google Scholar 

  • Talebian M, Jackson J (2004) A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophys J Int 156(3):506–526

    Article  Google Scholar 

  • Talebian M, Fielding EJ, Funning GJ, Ghorashi M, Jackson J, Nazari H, … et al. (2004) The 2003 Bam (Iran) earthquake: rupture of a blind strike-slip fault. Geophys Res Letters, 31(11)

  • Tavakoli B (1996) Major Seismotectonic Provinces of Iran. International Institute of Earthquake Engineering and Seismology (IIEES), Tehran

    Google Scholar 

  • Tavakoli B, Ghafory-Ashtiany M(1999) Seismic hazard assessment of Iran. Ann Geophys 42(6): 1013–1021

  • Thingbaijam KKS, Martin Mai P, Goda K (2017) New empirical earthquake source-scaling laws. Bull Seismol Soc Am 107(5):2225–2246

    Article  Google Scholar 

  • Vernant P, Nilforoushan F, Hatzfeld D, Abbassi MR, Vigny C, Masson F, Nankali H, Martinod J, Ashtiani A, Bayer R (2004) Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys J Int 157(1):381–398

  • Walpersdorf A, Manighetti I, Mousavi Z, Tavakoli F, Vergnolle M, Jadidi A, … Djamour Y (2014) Present-day kinematics and fault slip rates in eastern Iran, derived from 11 years of GPS data. J Geophys Res Sol Earth, 119(2), 1359–1383.

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wesnousky SG (2006) Predicting the endpoints of earthquake ruptures. Nature 44(7117):358–360

    Article  Google Scholar 

  • Wesnousky SG (2008) Displacement and geometrical characteristics of earthquake surface ruptures: issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bull Seismol Soc Am 98(4):1609–1632

    Article  Google Scholar 

  • Wheeler RL (2009) Methods of Mmax estimation east of the rocky mountains. US Geological Survey, Open-File Report 2009-1018, 44 p

  • Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95(2):684–698

    Article  Google Scholar 

  • Yazdani A, Kowsari M (2013) Bayesian estimation of seismic hazards in Iran. Scientia Iranica 20(3):422–430

    Google Scholar 

  • Yen YT, Ma KF (2011) Source-scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan. Bull Seismol Soc Am 101(2):464–481

    Article  Google Scholar 

  • Zamani A, Agh-Atabai M (2009) Temporal characteristics of seismicity in the Alborz and Zagros regions of Iran, using a multifractal approach. J Geodyn 47(5):271–279

    Article  Google Scholar 

  • Zare M, Amini H, Yazdi P, Sesetyan K, Demircioglu MB, Kalafat D, Erdik M, Giardini D, Khan MA, Tsereteli N (2014) Recent developments of the Middle East catalog. J Seismol 18(4):749–772

    Article  Google Scholar 

  • Salamat M, Zöller G, Amini M (2019) Prediction of the maximum expected earthquake magnitude in Iran: From a catalog with varying magnitude of completeness and uncertain magnitudes. Pure Appl Geophys 176:3425–3438

  • Salamat M, Zöller G, Zare M, Amini M (2018) The maximum expected earthquake magnitudes in different future time intervals of six seismotectonic zones of Iran and its surroundings. J Seismol 22:1485–1498

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Seismol Soc Am Bull 34:185–188

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Kowsari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 10191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowsari, M., Ghazi, H., Kijko, A. et al. Estimating the maximum earthquake magnitude in the Iranian Plateau. J Seismol 25, 845–862 (2021). https://doi.org/10.1007/s10950-021-09998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-021-09998-9

Keywords

Navigation