Skip to main content
Log in

Antibacterial Properties of Synthetic Cationic Bacteriochlorin Derivatives as Photosensitizers

  • EXPERIMENTAL WORKS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Antibacterial photodynamic therapy (APDT) is a promising method of treatment of local infections, based on photochemical reaction of photosensitizer (PS) under irradiation with visible or near infra-red light of appropriate wavelength. A molecule of PS is activated by light energy and as a result singlet oxygen and other reactive oxygen species, which are toxic for microbes, are generated. Antibacterial action of new PS (synthetic polycationic bacteriochlorin derivatives with spectral maximum of absorbance at 760 nm) with improved features was investigated in vitro in this work. Tetra- and octacationic bacteriochlorins with lower molecular mass, as compared with ones previously proposed, turned out to be highly effective against Pseudomonas aeruginosa and Staphylococcus aureus in plankton and biofilm state: reduction of viable bacteria in biofilms reached 5log10. The dependence of the effect on PS concentration, the time of incubation with PS and light dose was ascertained. Light microscopy of biofilms after photodynamic treatment and Live/Dead staining confirmed the death of bacteria or damage of their membranes after exposure to PS and irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Wainwright, M., Maisch, T., Nonell, S., Plaetzer, K., Almeida, A., Tegos, G.P., et al., Photoantimicrobials-are we afraid of the light?, Lancet Infect. Dis., 2017, vol. 17, no. 2, pp. e49–e55. https://doi.org/10.1016/S1473-3099(16)30268-7

    Article  PubMed  Google Scholar 

  2. Tavares, A., Carvalho, C.M., Faustino, M.A., Neves, M.G., Tomé, J.P., Tomé, A.C., et al., Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment, Mar. Drugs, 2010, vol. 8, no. 1, pp. 91–105. https://doi.org/10.3390/md8010091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vera, D.M., Haynes, M.H., Ball, A.R., Dai, T., Astrakas, C., Kelso, M.J., et al., Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes, Photochem. Photobiol., 2012, vol. 88, no. 3, pp. 499–511.https://doi.org/10.1111/j.1751-1097.2012.01087.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tseng, S.P., Teng, L.J., Chen, C.T., Lo, T.H., Hung, W.C., Chen, H.J., et al., Toluidine blue O photodynamic inactivation on multidrug resistant Pseudomonas aeruginosa, Lasers Surg. Med., 2009, vol. 41, no. 5, pp. 391–397. https://doi.org/10.1002/lsm.20765

    Article  CAS  PubMed  Google Scholar 

  5. Beirão, S., Fernandes, S., Coelho, J., Faustino, M.A., Tomé, J.P., Neves, M.G., et al., Photodynamic inactivation of bacterial and yeast biofilms with a cationic porphyrin, Photochem. Photobiol., 2014, vol. 90, no. 6, pp. 1387–1396. https://doi.org/10.1111/php.123317

    Article  PubMed  Google Scholar 

  6. Simpson, J.A., Smith, S.E., and Dean, R.T., Scavenging by alginate of free radicals released by macrophages, Free Radical Biol. Med., 1989, vol. 6, no. 4, pp. 347–353. https://doi.org/10.1016/0891-5849(89)90078-6

    Article  CAS  Google Scholar 

  7. Borriello, G., Werner, E., Roe, F., et al., Oxygen limitation contributes to antimicrobial tolerance of Pseudomonas aeruginosa in biofilms, Antimicrob. Agents Chemother., 2004, vol. 48, pp. 2659–2664. https://doi.org/10.1128/AAC.48.7.2659-2664.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bjarnsholt, Th., Jensen, P.O., Moser, C., and Hoiby, N., in Biofilm Infections, Bjarnsholt, Th., Jensen, P.O., Moser, C., and Hoiby, N., Eds., Springer Science + Business Media, 2011. https://doi.org/10.1007/978-1-4419-6084-9

  9. Almeida, A., Cunha, A., Faustino, M.A.F., Tome, A.C., and Neves, M.G.P.M.S., Porphyrins as antimicrobial photosensitizing agents, in Photodynamic Inactivation of Microbial Pathogens: Medical and Environmental Applications, Hamblin, M.R. and Jori, G., Eds., Cambridge: Royal Society of Chemistry, 2011. https://doi.org/10.1039/9781849733083-00083

  10. George, S., Hamblin, M.R., and Kishen, A., Uptake pathways of anionic and cationic photosensitizers into bacteria, Photochem. Photobiol. Sci., 2009, vol. 8, no. 6, pp. 788–795. https://doi.org/10.1039/B809624D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Strakhovskaya, M.G., Antonenko, Y.N., Pashkovskaya, A.A., Kotova, E.A., Kireev, V., Zhukhovitsky, V.G., et al., Electrostatic binding of substituted metal phthalocyanines to enterobacteria cells: its role in photodynamic inactivation, Biochemistry (Moscow), 2009, vol. 74, no. 12, pp. 1305–1314. https://doi.org/10.1134/S0006297909120025

    Article  CAS  PubMed  Google Scholar 

  12. de Melo, W.C., Avci, P., de Oliveira, M.N., Gupta, A., Vecchio, D., Sadasivam, M., et al., Photodynamic inactivation of biofilm: Taking a lightly colored approach to stubborn infection, Expert Rev. Anti-Infect. Ther., 2013, vol. 11, no. 7, pp. 669–693. https://doi.org/10.1586/14787210.2013.811861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dai, T., Tegos, G.P., Lu, Z., Huang, L., Zhiyentayev, T., Franklin, M.J., et al., Photodynamic therapy for Acinetobacter baumannii burn infections in mice, Antimicrob. Agents Chemother., 2009, vol. 53, no. 9, pp. 3929–3934. https://doi.org/10.1128/AAC.00027-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin, R., Agrawal, T., Khan, U., Gupta, G.K., Rai, V., Huang, Y.Y., et al., Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs, Nanomedicine (London, U. K.), 2015, vol. 10, no. 15, pp. 2379–2404. https://doi.org/10.2217/nnm.15.67

    Article  CAS  Google Scholar 

  15. Meerovich, G.A., Akhlyustina, E.V., Tiganova, I.G., Lukyanets, E.A., Makarova, E.A., Tolordava, E.R., et al., Novel polycationic photosensitizers for antibacterial photodynamic therapy, in Advances in Experimental Medicine and Biology, vol. 1282: Advances in Microbiology, Infectious Diseases and Public Health, Donelli, J., Ed., Cham: Springer, 2019. https://doi.org/10.1007/5584_2019_431

  16. Douplik, A., Saiko, G., Schelkanova, I., and Tuchin, V., The response of tissue to laser light, in Lasers for Medical Applications—Diagnostics, Therapy and Surgery, Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publ., 2013, vol. 3, pp. 47–109. https://doi.org/10.1533/9780857097545.1.47

  17. Meerovich, I., Nichols, M.G., and Dash, A.K., Low-intensity light-induced paclitaxel release from lipid-based nano-delivery systems, J. Drug Targeting, 2019, vol. 27, no. 9, pp. 971–983. https://doi.org/10.1080/1061186X.2019.1571066

    Article  CAS  Google Scholar 

  18. Dudkin, S.V., Makarova, E.A., Slivka, L.K., and Lukyanets, E.A., Synthesis and properties of tetra- and octacationic meso-tetrakis(3-pyridyl)bacteriochlorin derivatives, J. Porphyrins Phthalocyanines, 2014, vol. 18, no. 01n02, pp. 107–114. https://doi.org/10.1142/s1088424613501162.

  19. Tiganova, I.G., Makarova, E.A., Meerovich, G.A., Alekseeva, N.V., Tolordava, E.R., Zhizhimova, Y.S., et al., Photodynamic inactivation of pathogenic bacteria in biofilms using new synthetic bacteriochlorin derivatives, Biomed. Photonics, 2017, vol. 6, no. 4, pp. 27–36. https://doi.org/10.24931/2413-9432-2017-6-4-27-36

    Article  Google Scholar 

  20. Makarova, E.A., Meerovich, G.A., Lukyanets, E.A., Tiganova, I.G., Romanova, Yu.M., Loschenov, V.B., et al., RF Patent 2670201, 2018. http://www.freepatent.ru/patents/2670201.

  21. Huang, L., Huang, Y.Y., Mroz, P., Tegos, G.P., Zhiyentayev, T., Sharma, S.K., et al., Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers, Antimicrob. Agents Chemother., 2010, vol. 54, no. 9, pp. 3834–3841. https://doi.org/10.1128/AAC.00125-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wainwright, M., Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, vol. 42, pp. 13–28. https://doi.org/10.1093/jac/42.1.13

    Article  CAS  PubMed  Google Scholar 

  23. Friedrich, C.L., Moyles, D., Beveridge, T.J., et al., Antibacterial action of structurally diverse cationic peptides on Gram-positive bacteria, Antimicrob. Agents Chemother., 2000, vol. 44, pp. 2086–2092. https://doi.org/10.1128/aac.44.8.2086-2092.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. George, S., Hamblin, M.R., and Kishena, A., Uptake pathways of anionic and cationic photosensitizers into bacteria, Photochem. Photobiol. Sci., 2009, vol. 8, no. 6, pp. 788–795. https://doi.org/10.1039/b809624d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orekhov, Ph.S., Kholina, E.G., Bozdaganyan, M.E., Nesterenko, A.M., Kovalenko, I.B., and Strakhovskaya, M.G., Molecular mechanism of uptake of cationic photoantimicrobial phthalocyanine across bacterial membranes revealed by molecular dynamics simulations, J. Phys. Chem. B, 2018, vol. 122, no. 14, pp. 3711−3722. https://doi.org/10.1021/acs.jpcb.7b11707

    Article  CAS  PubMed  Google Scholar 

  26. Awad, M.M., Tovmasyan, A., Craik, J.D., Batinic-Haberle, I., and Benov, L.T., Important cellular targets for antimicrobial photodynamic therapy, Appl. Microb. Cell Physiol., 2016, vol. 104, no. 8, pp. 7679–7688. https://doi.org/10.1007/s00253-016-7632-3

    Article  CAS  Google Scholar 

  27. Simões, C., Gomes, M.C., Neves, M.G.P.M.S., Cunha, Â., Tomé, J.P.C., Tomé, A.C., et al., Photodynamic inactivation of Escherichia coli with cationic meso-tetraarylporphyrins-The charge number and charge distribution effects, Catal. Today, 2016, vol. 266, pp. 197–204. https://doi.org/10.1016/j.cattod.2015.07.031

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Tiganova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

ADDITIONAL INFORMATION

Meerovich G.A.—https://orcid.org/0000-0002-2046-5492

Romanova Yu. M.—https://orcid.org/0000-0002-8547-1711

Lukyanets E. A.—https://orcid.org/0000-0002-8853-6912

Gintsburg A. L.—https://orcid.org/0000-0002-6182-3866

Zhizhimova Yu.S.—https://orcid.org/0000-0002-0665-9821

Makarova E.A.—https://orcid.org/0000-0003-4144-6159

Alekseeva N.V.—https://orcid.org/0000-0001-8051-7170

Philipova N.I.—https://orcid.org/0000-0002-1368-9113

Tolordava E.R.—https://orcid.org/0000-0002-9920-2432

Tiganova I.G.—https://orcid.org/0000-0003-2340-2726

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiganova, I.G., Zhizhimova, Y.S., Philipova, N.I. et al. Antibacterial Properties of Synthetic Cationic Bacteriochlorin Derivatives as Photosensitizers. Mol. Genet. Microbiol. Virol. 35, 248–256 (2020). https://doi.org/10.3103/S0891416820040096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416820040096

Keywords:

Navigation