Skip to main content

Advertisement

Log in

Assessing relationship of forest biophysical factors with NDVI for carbon management in key coniferous strata of temperate Himalayas

  • Original article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Assessing biophysical variables are essential for evaluation of carbon dynamics due to anthropogenic activities. Biomass carbon is an important biophysical parameter of forest ecosystems that indicates carbon mitigation and human–forest interactions. Spectral modeling approach was used to assess the relation of Normalized Difference Vegetation Index (NDVI) with biomass carbon, crown density, tree density, slope, altitude, aspect, species, and forest division in temperate conifer region of Himalaya. Field inventory was recorded from 188 biomass plots of 0.1 ha each across the study area. NDVI was observed to have a positive relation with aboveground biomass carbon, crown density, tree density, and altitude. The NDVI and ABC values ranged from (0.11 to 0.43) and (1.54 to 276.82 t ha−1), respectively. Among the aspects, highest and lowest average NDVI was observed for south east (0.289) and north (0.258), respectively. Similarly highest and lowest average aboveground biomass carbon was observed for north east (72.63 t ha−1) and east (44.30 t ha−1), respectively. NDVI expressed a fairly good relation with biophysical parameters including altitude, aspect, crown density, tree density, species, and location (forest division). NDVI using principal tree species composition (forest type) revealed a relation with aboveground biomass carbon for Cedrus deodara (R2 = 0.63), Mixed I (R2 = 0.61), Pinus wallichiana (R2 = 0.57), and Mixed-II (R2 = 0.48). NDVI demonstrates potential to understand biomass carbon variability through establishment of relations with forest biophysical parameters using spectral modeling approach. Varying NDVI can be ascribed to vegetation canopy density, number of stems, species, and altitude. The database and established relations would help indicate biomass carbon dynamics and enable to adopt site-specific management. The study further helps draw inferences on mitigation and adaptation perspectives in view of varying biophysical conditions that occur in a forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adger WN, Agrawala S, Mirza MMQ, Conde C, O’Brien K, Pulhin J, Pulwarty R, Smit B, Takahashi K (2007) Assessment of adaptation practices, options, constraints and capacity. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the Fourth Assessment Report of the Intergovernmental Panel of Climate Change (IPCC). Cambridge University press, Cambridge, pp 717–743

    Google Scholar 

  • Ahmad A, Liua QJ, Nizami SM, Mannan A, Saeed S (2018) Carbon emission from deforestation, forest degradation and wood harvest in the temperate region of Hindukush Himalaya, Pakistan between 1994 and 2016. Land Use Policy 78:781–790

    Article  Google Scholar 

  • Akash A, Singh KS, Kanga S (2018) Estimating the change in forest cover density and predicting NDVI for west Singhbhum using linear regression. International Journal for Environmental Rehabilitation and Conservation 9(1):193–203

    Article  Google Scholar 

  • Ali A, Ullah S, Bushra S, Ahmad N, Ali A, Khan MA (2018) Quantifying forest carbon stocks by integrating satellite images and forest inventory data. Aus J For Sci 135(2):93–117

    Google Scholar 

  • Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, Martinelli LA (2010) Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For Ecol Manag 260:679–691

    Article  Google Scholar 

  • Anand A, Singh SK, Kanga S (2018) Estimating the change in forest cover density and predicting NDVI for west Singhbhum using linear regression. ESSENCE Int J Env Rehab Conserv IX 1:193–203

    Google Scholar 

  • Ardo J (1992) Volume quantification of coniferous forest compartments using spectral radiance record by Landsat Thematic Mapper. Int J Rem Sens 13:1779–1786

    Article  Google Scholar 

  • Ashton MS, Tyrrell ML, Spalding D, Gentry B (2012) Managing forest carbon in a changing climate. Springer, New York

    Book  Google Scholar 

  • Barichivich J, Briffa KR, Myneni RB, Osborn TJ, Melvin TM, Ciais P (2013) Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob Chang Biol 19:3167–3183

    Article  Google Scholar 

  • Beck PS, Juday GP, Alix C, Barber VA, Winslow SE, Sousa EE, Heiser P, Herriges JD, Goetz SJ (2011) Changes in forest productivity across Alaska consistent with biome shift. Ecol Lett 14:373–379

    Article  Google Scholar 

  • Bellassen V, Luyssaert S (2014) Carbon sequestration: managing forests in uncertain times. Nature News 506(7487):153–155

    Article  Google Scholar 

  • Birdsey R, Pan Y (2015) Trends in management of the world’s forests and impacts on carbon stocks. For Ecol Manag 355:83–90

    Article  Google Scholar 

  • Brodribb TJ, Scott AM, McAdam GJJ, Samuel CVM (2014) Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc Natl Acad Sci U S A 111(40):14489–14493

    Article  Google Scholar 

  • Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer. FAO Forestry Paper no. 134, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy, pp 55 Schoene and Bernier

  • Cai DL, Fraedrich K, Sielmann F, Guan YN, Guo S, Zhang L, Zhu XH (2014) Climate and vegetation: an era-interim and GIMMS NDVI analysis. J Clim 27:5111–5118

    Article  Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oceologia 111: 1–11, 1

  • Calvao T, Palmeirim JM (2004) Mapping Mediterranean scrub with satellite imagery: biomass estimation and spectral behaviour. Int J Remote Sens 25(16):3113–3126

    Article  Google Scholar 

  • Carreiras JMB, Pereira JMC, Pereira JS (2006) Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. For Ecol Manag 223:45–53

    Article  Google Scholar 

  • Castro KL, Sanchez GA, Rivard B (2003) Monitoring secondary tropical forest using space-born data: implication for Central America. Int J Remote Sens 24:1853–1894

    Article  Google Scholar 

  • Chen CC, Xie GD, Zhen L (2008) Analysis of Jinghe watershed vegetation dynamics and evaluation of its relation to precipitation. Acta Ecol Sin 28(3):0925–0938

    Article  Google Scholar 

  • Clerici N, Rubiano K, Abd-Elrahman A, Hoestettler JMP, Escobedo FJ (2016) Estimating aboveground biomass and carbon stocks in Periurban Andean secondary forests using very high resolution imagery. Forests 7(138):1–17. https://doi.org/10.3390/f7070138

    Article  Google Scholar 

  • Cohen WB, Spies TA (1992) Estimating structural attributes of Douglas fir/western hemlock forest stands from Landsat SPOT imagery. Rem. Sens. Environ. 41:1–17

    Article  Google Scholar 

  • Curran PJ, Dungan JL, Gholz HL (1992) Seasonal LAI in slash pine estimated with Landsat TM. Rem Sens Environ 39:3–13

    Article  Google Scholar 

  • Das S, Singh TP (2012) Correlation analysis between biomass and spectral vegetation indices of forest ecosystem. International Journal of Engineering Research and Technology 1(5)

  • De Castillho CV, Magnusson WE, de Araujo RNO, Luizao RCC, Luizao FJ, Lima AP, Higuchi N (2006) Variation in aboveground tree live biomass in a central Amazonian forest: effects of soil and topography. For Ecol Manag 234:85–96

    Article  Google Scholar 

  • Devagiri GM, Money S, Singh S, Dadhawal VK, Patil P, Khaple AK, Devakumar AS, Hubballi S (2013) Assessment of above ground biomass and carbon pool in different vegetation types of south western part of Karnataka, India using spectral modeling. Trop Ecol 54(2):149–165

    Google Scholar 

  • Dimitrov PK, Roumenina EK (2013) Combining SPOT 5 imagery with plotwise and standwise forest data to estimate volume and biomass in mountainous coniferous site. Central European Journal of Geosciences 5:208–222. https://doi.org/10.2478/s13533-012-0124-9

    Article  Google Scholar 

  • Dube T, Mutanga O (2015) Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment. South Africa ISPRS Journal of Photogrammetry and Remote Sensing 101:36–46

    Article  Google Scholar 

  • Eklundh L, Harrie L, Kuusk A (2001) Investigating relationships between Landsat ETM sensor data and leaf area index in a boreal conifer forest. Rem Sens Environ 78:239–251

    Article  Google Scholar 

  • Fadaei H, Sakai T, Yoshimura T, Kazuyuki K, Torii K (2009) Relationship between tree density and vegetation index of juniper forest in the northeast of Iran. Pp 137–144 in Proceedings of the 30th Asian Conference on Remote Sensing 18–23 October 2009, Beijing

    Google Scholar 

  • Fadaei H, Sakai T, Yoshimura T, Kazuyuki M (2010) Estimation of tree density in the pistachio (Pistacia vera) forest of north-East Iran by ALOS data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science 38(8):637–642

    Google Scholar 

  • Falkowski MJ, Gessler PE, Morgan P, Hudak AT, Smith AMS (2005) Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. For Ecol Manag 217:129–146

    Article  Google Scholar 

  • Fang JY, Chen AP, Zhao SQ, Ci LJ (2002) Calculating forest biomass changes in China—response. Science 296(1359)

  • Fares S, Paoletti E, Calfapietra C, Mikkelsen TN, Samson R, Le Thiec D (2017) Carbon sequestration by urban trees. In: The urban Forest. Springer, Cham, pp 31–39

    Chapter  Google Scholar 

  • Fischlin A, Ayres M, Karnosky D, Kellomäki S, Louman B, Ong C, Plattner G-K, Santoso H, Thompson I, Booth TH, Marcar N, Scholes B, Swanston C, Zamolodchikov D (2009) Future environmental impacts and vulnerabilities. In: Seppälä R, Buck A, Katila P (eds) Adaptation of forests and people to climate change: a global assessment report, vol 22. IUFRO World Series, Helsinki, pp 53–100

    Google Scholar 

  • Fontaine C, Dajoz I, Meriguet J, Loreau M (2005) Functional diversity of plant pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4:129–135

    Article  Google Scholar 

  • Foody GM, Cutler ME, McMorrow J, Pelz D, Tangki H, Boyd DS, Douglas I (2001) Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Glob Ecol Biogeogr 10:379–387

    Article  Google Scholar 

  • FSI (1996) Volume Equations for Forests of India, Nepal and Bhutan. Forest Survey of India, Ministry of Environment and Forests, Govt. of India. pp 249

  • FSI (2019) India State of Forest Report. Forest Survey of India, Dehradun, Uttarakhand, Ministry of Environment, Forest and Climate Change, Government of India. pp 222

  • Fu B, Burgher I (2015) Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. J Arid Environ 113:59–68. https://doi.org/10.1016/j.jaridenv.2014.09.010

    Article  Google Scholar 

  • Ghimire BK, Mainali KP, Chadhary RP, Ghimeray AK (2010) Regeneration of Pinus wallichiana AB Jackson in a trans-Himalayan dry valley of north-central Nepal. Himal J Sci 6:19–26

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:1–13

    Article  Google Scholar 

  • Guo Z, Fang J, Pan Y, Birdsey R (2010) Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods. For Ecol Manag 259:1225–1231

    Article  Google Scholar 

  • Gwenzi D, Eileen H, Helmer XZ, Michael A, Lefsky HMV (2017) Predictions of tropical forest biomass and biomass growth based on stand height or canopy area are improved by Landsat-scale phenology across Puerto Rico and the U.S. Virgin Islands. Remote Sens 9(2):123. https://doi.org/10.3390/rs9020123

    Article  Google Scholar 

  • Hall RJ, Skakun RS, Arsenault EJ, Case BS (2006) Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume. For Ecol Manag 225:378–390

    Article  Google Scholar 

  • He YQ, Lee E, Warner TA (2017) A time series of annual land use and land cover maps of China from 1982 to 2013 generated using avhrr gimms ndvi3g data. Remote Sens Environ 199:201–217

    Article  Google Scholar 

  • Horler DNH, Ahern FJ (1986) Forestry information content of Thematic Mapper data. Int J Rem Sens 7:405–428

    Article  Google Scholar 

  • Huemmrich KF, Goward SN (1997) Vegetation canopy PAR absorptance and NDVI: an assessment for ten tree species with the SAIL model. Remote Sens Environ 61(2):254–269

    Article  Google Scholar 

  • Humagain K, Portillo-Quintero C, Cox RD, Cain JW III (2017) mapping tree density in forests of the southwestern USA using Landsat 8 data. Forests 2017 8(8):287. https://doi.org/10.3390/f8080287

    Article  Google Scholar 

  • Imran AB, Ahmed S (2018) Potential of Landsat-8 spectral indices to estimate forest biomass. International Journal of Human Capital in Urban Management 3(4):303–314

    Google Scholar 

  • IPCC (2006) Guidelines for national greenhouse gas inventories. In: Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Volume 4, Agriculture, forestry and other land use (AFLOLU). Published by the Institute for Global Environmental Strategies for the IPCC, Hayama

    Google Scholar 

  • Ismail I, Sohail M, Gilani H, Ali A, Hussain K, Hussain KBS, Qamer FM, Qazi W, Ning W, Kotru R (2018) Forest inventory and analysis in Gilgit-Baltistan: a contribution towards developing a forest inventory for all Pakistan. Int J Clim Change Strategies Manage 10(4):616–631

    Article  Google Scholar 

  • Jensen JR (2007) Remote Sensing of Environment: An Earth Resource Perspective; Pearson Prentice Hall: Upper Saddle River, NJ, USA

  • Ji L, Peters AJ (2007) Performance evaluation of spectral vegetation indices using a statistical sensitivity function. Remote Sens Environ 106:59–65

    Article  Google Scholar 

  • Ji L, Zhang L, Wylie BK (2009) Analysis of dynamic thresholds for the normalized difference water index. Photogramm Eng Remote Sens 75:1307–1317

    Article  Google Scholar 

  • Ji L, Wylie BK, Nossov DR, Petersona B, Waldrop MP, McFarland JW, Rover J, Hollingsworth TN (2012) Estimating aboveground biomass in interior Alaska with Landsat data and field measurements. Int J Appl Earth Obs Geoinf 18:451–461

    Google Scholar 

  • Joshi HG, Ghose M (2014) Community structure, species diversity, and aboveground biomass of the Sundarbans mangrove swamps. Trop Ecol 55:283–303

    Google Scholar 

  • Kahriman A, Günlü A, Karahalil U (2014) Estimation of crown closure and tree density using Landsat TM satellite images in mixed forest stands. J Indian Soc Remote Sens 42(3):559–567. https://doi.org/10.1007/s12524-013-0355-3

  • Kale MP, Singh S, Roy PS (2002) Biomass and productivity estimation using aerospace data and geographic information system. Trop Ecol 43:123–136

  • Karnieli A, Agam N, Pinker RT (2009) Use of NDVI and land surface temperature for drought assessment: merits and limitations. J Clim 23:618–633. https://doi.org/10.1175/2009JCLI2900.1

    Article  Google Scholar 

  • Kaul M, Mohren GMJ, Dadhwal VK (2010) Carbon storage and sequestration potential of selected tree species in India. Mitig Adapt Strateg Glob Chang 15:489–510

    Article  Google Scholar 

  • Kayiranga A, Ndayisaba F, Nahayo L, Karamage F, Nsengiyumva JB, Mupenzi C, Nyesheja EM (2017) Analysis of climate and topography impacts on the spatial distribution of vegetation in the Virunga volcanoes massif of east-Central Africa. Geosciences 7(17)

  • Keenan RJ (2015) Climate change impacts and adaptation in forest management: a review. Ann For Sci 72:145–167. https://doi.org/10.1007/s13595-014-0446-5

    Article  Google Scholar 

  • Keith H, Lindenmayer D, Mackey M, Blair D, Carter L, Mcburney L, Okada S, Konishi-Nagano T (2014) Managing temperate forests for carbon storage: impacts of logging versus forest protection on carbon stocks. Ecosphere 5(6):75. https://doi.org/10.1890/ES14-00051.1

  • Khare S, Ghosh SK, Latifi H, Vijay S, Dahms T (2017) Seasonal-based analysis of vegetation response to environmental variables in the mountainous forests of Western Himalaya using Landsat 8 data. Int J Remote Sens 11:4418–4442

    Article  Google Scholar 

  • Kogan F, Sullivan J (1993) Development of global drought-watch system using NOAA AVHRR data. Adv Space Res 13:219–222

    Article  Google Scholar 

  • Kumar A, Uniyal SK, Lal B (2007) Stratification of forest density and its validation by NDVI analysis in a part of western Himalaya, India using remote sensing and GIS techniques. Int J Remote Sens 28(11):2485–2495. https://doi.org/10.1080/01431160600693583

    Article  Google Scholar 

  • Kumar P, Tomar V, Srivastava P, Singh J, Gupta G (2014) Geospatial approach for carbon sink in the timbered biomass for tropical wildlife reserve. Asian. J Geoinformatics:14(1)

  • Kumar K, Nagai M, Witayangkurn A, Kritiyutanant K, Nakamura S (2016) Above ground biomass assessment from combined optical and SAR remote sensing data in Surat Thani Province, Thailand. Journal of Geographic Information System 8:506–516

    Article  Google Scholar 

  • Kumar J, Talwar P, Krishna AP (2017) Assessment of forest cover conditions and canopy density using remote sensing and GIS techniques in parts of Jharkhand State. International Journal of Research in Agriculture and Forestry 4(4):12–18

    Google Scholar 

  • Kutiel P, Lavee H (1999) Effect of slope aspect on soil and vegetation properties along an aridity transect. Israel J Plant Sci 47:169–178

    Article  Google Scholar 

  • Labrecque S, Fournier RA, Luther JE, Piercey D (2006) A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. For Ecol Manag 226:129–144

    Article  Google Scholar 

  • Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25:381–388

    Article  Google Scholar 

  • Lathrop RG Jr, Pierce LL (1991) Ground-based canopy transmittance and satellite remotely sensed measurements for estimation of coniferous forest canopy structure. Rem Sens Environ 36:179–188

    Article  Google Scholar 

  • Le Quere C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka SI, Apos A, Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, Van Der Laan-Luijkx IT, Van Der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth System Science Data 8:605–649

    Article  Google Scholar 

  • Liang L, Sun Q, Luo X, Wang JH, Zhang LP, Deng MX (2017) Long-term spatial and temporal variations of vegetative drought based on vegetation condition index in China. Ecosphere:8

  • Loranty MM, Davydov SP, Kropp H, Alexander HD, Mack MC, Natali SM, Zimov NS (2018) Vegetation indices do not capture forest cover variation in upland Siberian larch forests. Remote Sens 10:1686. https://doi.org/10.3390/rs10111686

    Article  Google Scholar 

  • Louman B, Fischlin A, Glück P, Innes J, Lucier A, Parrotta J, Santoso H, Thompson I, Wreford A (2009) Forest ecosystem services: a cornerstone for human well-being. In: Seppälä R, Buck A, Katila P (eds) Adaptation of forests and people to climate change: a global assessment report, vol 22. IUFRO World Series, Helsinki, pp 15–28

    Google Scholar 

  • Lu D (2005) Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int J Remote Sens 26:2509–2525

    Article  Google Scholar 

  • Lu D, Chen Q, Wang G, Liu L, Li G, Moran E (2016) A survey of remote sensing based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth 9(1):63–105. https://doi.org/10.1080/17538947.2014.990526

    Article  Google Scholar 

  • Lucier A, Ayres M, Karnosky D, Thompson I, Loehle C, Percy K, Sohngen B (2009) Forest responses and vulnerabilities to recent climate change. In: Seppälä R, Buck A, Katila P (eds) Adaptation of forests and people to climate change: a global assessment report, vol 22. IUFRO World Series, Helsinki, pp 29–52

    Google Scholar 

  • Macedo FL, Sousa AMO, Goncalves AC, Silva JRM, Mesquita PA, Rodrigues RAF (2018) Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images. European Journal of Remote Sensing 51(1):932–944

    Article  Google Scholar 

  • Madugundu R, Nizalapur V, Jha CS (2008) Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka, India. Int J Appl Earth Obs Geoinf 10:211–219

    Google Scholar 

  • Maren IE, Karki S, Prajapati C, Yadav RK, Shrestha BB (2015) Facing north or south: does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? J Arid Environ 121:112–123

    Article  Google Scholar 

  • McRoberts RE, Tomppo EO, Næsset E (2010) Advances and emerging issues in national forest inventories. Scand J Forest Res 25(4):368–381

    Article  Google Scholar 

  • Meng Q, Cieszewski CJ, Madden M, Borders B (2007) A linear mixed-effects model of biomass and volume of trees using Landsat ETM+ images. For Ecol Manag 244:93–101

    Article  Google Scholar 

  • Mishra NB, Kumar PM, Bharat BS, Jackson R, Karki D (2018) Species-level vegetation mapping in a Himalayan Treeline Ecotone using unmanned aerial system (UAS) imagery. International Journal of Geo-Information 7:445. https://doi.org/10.3390/ijgi7110445

    Article  Google Scholar 

  • Mohajer MR (2005) Silviculture. University of Tehran Press, Tehran, p 387

    Google Scholar 

  • Mohammadi J, Shataee SH, Namiranian M, Næsset E (2017) Modeling biophysical properties of broad-leaved stands in the hyrcanian forests of Iran using fused airborne laser scanner data and ultraCam-D images. Int J Appl Earth Obs Geoinf 61:32–45. https://doi.org/10.1016/j.jag.2017.05.003

    Article  Google Scholar 

  • Moisen GG, Freeman EA, Blackard JA, Frescino TS, Zimmermann NE, Edwards TC Jr (2006) Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecol Model 199(2):176–187

    Article  Google Scholar 

  • Mokany K, Raison R, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Chang Biol 12:84–96

    Article  Google Scholar 

  • Mokarram M, Sathyamoorthy D (2015) Modeling the relationship between elevation, aspect and spatial distribution of vegetation in the Darab Mountain, Iran using remote sensing data. Model Earth Syst Environ 1:30. https://doi.org/10.1007/s40808-015-0038-x

    Article  Google Scholar 

  • Mong CE, Vetaas OR (2006) Establishment of Pinus wallichiana on a Himalayan glacier foreland: stochastic distribution or safe sites? Arct Antarct Alp Res 38:584–592

    Article  Google Scholar 

  • Motlagh MG, Kafaky SB, Mataji A, Akhavan R (2018) Estimating and mapping forest biomass using regression models and Spot-6 images (case study: Hyrcanian forests of north of Iran). Environ Monit Assess 190:352

    Article  Google Scholar 

  • Myneni, RB, Hall FG, Sellers PJ, Marshak AL (1995) Interpretation of spectral vegetation indexes. IEEE Trans Geosci Remote Sens 33(2): 481–486. https://doi.org/10.1109/36.377948

  • Myneni R, Keeling C, Tucker C, Asrar G, Nemani R (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–701

    Article  Google Scholar 

  • Navar J (2009) Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For Ecol Manag 257(2):427–434

    Article  Google Scholar 

  • Ni Y (2014) Global potential for carbon storage based on forest ecosystems. Master’s thesis

  • Nouri H, Anderson S, Sutton P, Beecham S, Nagler P, Jarchow C, Roberts D (2017) NDVI, scale invariance and the modifiable areal unit problem: an assessment of vegetation in the Adelaide parklands. Sci Total Environ 11(8):584–585. https://doi.org/10.1016/j.scitotenv.2017.01.130

    Article  Google Scholar 

  • Olivero AM, Hix DM (1998) Influence of aspect and stand age on ground flora of Southeastern Ohio forest ecosystems. Plant Ecol 139:177–187

    Article  Google Scholar 

  • Orhan O, Yakar M (2016) Investigating land surface temperature changes using Landsat data in Konya, Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B8:285–289. https://doi.org/10.5194/isprsarchives-XLI-B8-285-2016

  • Palchowdhuri Y, Vyas A, Kushwaha D, Roy A, Roy PS (2016) Quantitative assessment of aboveground carbon dynamics in temperate forest of Shimla district. Trop Ecol 57(4):825–837

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  Google Scholar 

  • Patil P, Singh S, Dadhwal VK (2012) Above ground forest phytomass assessment in southern Gujarat. Journal of the Indian Society of Remote Sensing 40:37–46

    Article  Google Scholar 

  • Paudel S, Vetaas OR (2014) Effects of topography and land use on woody plant species composition and beta diversity in an arid trans-Himalayan landscape, Nepal. J Mt Sci 11(5):1112–1122

    Article  Google Scholar 

  • Peterson DL, Spanner MA, Running SW, Teuber KB (1987) Relationship of Thematic Mapper simulator data to leaf area index of temperate coniferous forests. Rem Sens Environ 22:323–331

    Article  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trend in Ecology and Evolution 20(9):503–510. https://doi.org/10.1016/j.tree.2005.05.011

    Article  Google Scholar 

  • Piao SL, Fang JY, Zhu B, Tan K (2005) Forest biomass carbon stocks in China over the past 2 decades: estimation based on integrated inventory and satellite data. J Geophys Res Biogeosci 110

  • Pinheiro ES, Durigan G, Adami M (2009) Imagens Landsat e QuickBird são capazes de gerar estimativas precisas de biomassa aérea de Cerrado? In INPE (Ed.), XIV Simpósio Brasileiro de Sensoriamento Remoto, Anais XIV Simpósio Brasileiro de Sensoriamento Remoto (pp. 2913–2920). Brazil: São José dos Campos

  • Powell SL, Warren BC, Healey SP, Kennedy RE, Moisen GG, Pierce KB, Ohmann JL (2010) Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sens Environ 114:1053–1068

    Article  Google Scholar 

  • Pravalie R (2018) Major perturbations in the Earth’s forest ecosystems. Possible implications for global warming. Earth-Science Reviews

  • Prober SM, Thiele KR, Lunt ID (2007) Fire frequency regulates tussock grass composition, structure and resilience in endangered temperate woodlands. Australian Ecology 32:808–824

    Article  Google Scholar 

  • Rajput SS, Shukla NK, Gupta VM, Jain JD (1996) Timber mechanics: strength classification and grading of timber. Indian Coun. For. Res. Educ. Publ. 38(103)

  • Rashid I, Bhat MA, Romshoo SA (2016) Assessing changes in the above ground biomass and carbon stocks of Lidder valley, Kashmir Himalaya, India. Geocarto International DOI 32:717–734. https://doi.org/10.1080/10106049.2016.1188164

    Article  Google Scholar 

  • Reddy RS, Rajashekar G, Jha CS, Dadhwal VK, Pelissier R, Couteron P (2016) Estimation of above ground biomass using texture metrics derived from IRS cartosat1 panchromatic data in evergreen forests of western ghats, India. J. Indian Soc. Remote Sens:1–9

  • Roy PS, Ravan SA (1996) Biomass estimation using satellite remote sensing data—an investigation on possible approaches for natural forest. J Biosci 21:535–561

    Article  Google Scholar 

  • Ryan CM, Williams M, Grace J (2011) Above- and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43(4):423–432

    Article  Google Scholar 

  • Santi E, Tarantino C, Amici V, Bacaro G, Blonda P, Borselli L, Rossi M, Tozzi S, Torri D (2014) Fine-scale spatial distribution of biomass using satellite images. J Ecol Nat Environ 6:75–86

    Article  Google Scholar 

  • SCBD (Secretariat of the Convention on Biological Diversity) (2003) Interlinkages between biological diversity and climate change. In: Advice on the integration of biodiversity considerations into the implementation of the United Nations framework convention on climate change and its Kyoto protocol. CBD technical series no. 10. SCBD, Montreal, p 154

    Google Scholar 

  • Schickhoff U (1996) Contributions to the synecology and syntaxonomy of West Himalayan coniferous forest communities. Phytoecoenologia 26(1996):537–581

    Article  Google Scholar 

  • Schoene DHF, Bernier PY (2012) Adapting forestry and forests to climate change: A challenge to change the paradigm. Forest Policy Econ (24):12–19. https://doi.org/10.1016/j.forpol.2011.04.007

  • Segura M, Kanninen M (2005) Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica 1. Biotropica J Biol Conserv 37(1):2–8

    Google Scholar 

  • Sharma CM, Gairola S, Baduni NP, Ghildiyal SK, Suyal S (2011) Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya. India J Biosci 36:701–708

    Article  Google Scholar 

  • Sivanpillai R, Smith CT, Srinivasan R, Messina MG, Wu XB (2006) Estimation of managed loblolly pine stand age and density with Landsat ETM+ data. For Ecol Manag 223:247–254

    Article  Google Scholar 

  • Somogyi Z, Cienciala E, Makipaa R, Muukkonen P, Lehtonen A, Weiss P (2007) Indirect methods of large-scale forest biomass estimation. Eur J For Res 126:197–207

    Article  Google Scholar 

  • Sonmez S, Macar N, Demirozer AI (2014) The influence of aspect on the vegetation of Cataldag. The 3rd international geography symposium-GEOMED 2013. Procedia - Social and Behavioral Sciences 120:566–575

    Google Scholar 

  • Spooner PG, Biggs SV (2008) Woodlands on farms in southern New South Wales: a longer-term assessment of vegetation changes after fencing. Ecol Manag Restor 9:33–41

    Article  Google Scholar 

  • Teobaldelli M, Somogyi Z, Migliavacca M, Usoltsev VA (2009) Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. For Ecol Manag 257:1004–1010

    Article  Google Scholar 

  • Thurner M, Beer C, Santoro M, Carvalhais N, Wutzler T, Schepaschenko D, Shvidenko A, Kompter E, Ahrens B, Levick SR (2015) Carbon stock and density of northern boreal and temperate forests. Glob Ecol Biogeogr 23:297–310

    Article  Google Scholar 

  • Tian J, Cao CX, Chen W, Bao SN, Yang B, Myneni RB (2015) Response of vegetation activity dynamic to climatic change and ecological restoration programs in inner Mongolia from 2000 to 2012. Ecol Eng 2015(82):276–289

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–150

    Article  Google Scholar 

  • Tyrrell ML, Ross J, Kelty M (2012) In: Ashton MS, Tyrrell ML, Spalding D, Gentry B (eds) Carbon dynamics in the temperate forest. In: Managing forest carbon in a changing climate. Springer Netherlands, Dordrecht, pp 77–107

    Chapter  Google Scholar 

  • UNFCCC (2004) Estimation of emissions and removals in land-use change and forestry and issues relating to projections (note by the secretariat. Bhttp://www.unfccc.int≥)

  • Vahedi AA, Bijani-Nejad AR, Djomo A (2016) Horizontal and vertical distribution of carbon stock in natural stands of Hyrcanian lowland forests: a case study, Nour Forest Park, Iran. Journal of Forest Science 62(11):501–510. https://doi.org/10.17221/49/2016-JFS

    Article  Google Scholar 

  • Valor E, Caselles V (1996) Mapping land surface emissivity from NDVI: application to European, African, and South American areas. Remote Sens Environ 184:167–184

    Article  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jonsdottir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland O, Turner PL, Tweedie CE, Webber PJ (2006) Plant community responses to experimental warming across the tundra biome. Proceedings National Academy of Sciences 103:1342–1346

    Article  Google Scholar 

  • Wani AA, Joshi PK, Singh O (2015) Estimating biomass and carbon mitigation of temperate coniferous forests using spectral modeling and field inventory data. Ecological Informatics 25:63–70

    Article  Google Scholar 

  • Wani AA, Joshi PK, Singh O, Kumar R, Rawat VRS, Khaki BA (2017) Forest biomass carbon dynamics (1980–2009) in western Himalaya in the context of REDD+ policy. Environ Earth Sci 76(16):573

    Article  Google Scholar 

  • Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) Land use, land-use change and forestry—a special report of the IPCC. IPCC, Geneva

    Google Scholar 

  • Watzlawick LF, Koehler HS, Kirchner FF (2006) Estimativa de biomassa e carbono em plantios de Pinus taeda L. utilizando imagens do satélite IKONOS II. Ciência e Natura 28:45–60

    Google Scholar 

  • Watzlawick LF, Kirchner FF, Sanquetta CR (2009) Estimativa de biomassa e carbono em floresta com araucária utilizando imagens do satélite Ikonos II. Ciência Florestal 19:169–181

    Article  Google Scholar 

  • Wu DH, Zhao X, Liang SL, Zhou T, Huang KC, Tang BJ, Zhao WQ (2015) Time-lag effects of global vegetation responses to climate change. Glob Chang Biol 21:3520–3531

    Article  Google Scholar 

  • Yan F, Wu B, Wang Y (2013) Estimating aboveground biomass in Mu Us Sandy Land using Landsat spectral derived vegetation indices over the past 30 years. Journal of AridLand 5(4):521–530. https://doi.org/10.1007/s40333-013-0180-0

    Article  Google Scholar 

  • Yang Y, Watanabe M, Li F, Zhang J, Zhang W, Zhai J (2006) Factors affecting forest growth and possible effects of climate change in the Taihang Mountains, northern China. Forestry 79:135–147

    Article  Google Scholar 

  • Yang Y, Wu T, Wang S, Li J, Muhanmmad F (2019) The NDVI-CV method for mapping evergreen trees in complex urban areas using reconstructed Landsat 8 time-series data. Forests 10:139. https://doi.org/10.3390/f10020139

  • Yengoh GT, Dent D, Olsson L, Tengberg AE, Tucker CJ (2015) Used of the normalised difference vegetation index (NDVI) to assess land degradation at multiple scales; current status, future trends and practical considerations. Springer Briefs in Environmental Science, New York

    Google Scholar 

  • Zhan ZZ, Liu HB, Li HM, Wu W, Zhong B (2012) The relationship between NDVI and terrain factors – a case study of Chongqing. Procedia Environ Sci 12:765–771

    Article  Google Scholar 

  • Zheng D, Rademacher J, Chen J, Crow T, Bresee M, LeMoine J, Ryu S (2004) Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin. Remote Sens Environ 93:402–411

    Article  Google Scholar 

  • Zhou LM, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res Atmos 106:20069–20083

    Article  Google Scholar 

  • Zhou JJ, Zhao Z, Zhao Q, Zhao J, Wang H (2013) Quantification of aboveground forest biomass using Quickbird imagery, topographic variables, and field data. J Appl Remote Sens 7(1):073484. https://doi.org/10.1117/1.JRS.7.073484

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Department of Science and Technology (Government of India) for providing financial support in carrying out this study under project no. DST/IS-STAC/CO2-SR-220/14(G). Thanks are also due to the Principal Chief Conservator of Forests and other officers from Jammu and Kashmir Forest Department for allowing and supporting us in collecting data from different forest divisions. The authors are highly thankful to the anonymous reviewers for their critical comments which greatly helped us in raising the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq Amin Wani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wani, A.A., Bhat, A.F., Gatoo, A.A. et al. Assessing relationship of forest biophysical factors with NDVI for carbon management in key coniferous strata of temperate Himalayas. Mitig Adapt Strateg Glob Change 26, 1 (2021). https://doi.org/10.1007/s11027-021-09937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11027-021-09937-6

Keywords

Navigation