Skip to main content
Log in

Influence of Specimen Layout on 17-4PH (AISI 630) Alloys Fabricated by Low-Cost Additive Manufacturing

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work examined the effects of specimen layout on physical, microstructural, and mechanical properties of 17-4PH (AISI 630) fabricated by metal-fused deposition modeling process. Tensile specimens were 3D-printed with the different layouts using 100 pct infill. The as-printed and as-sintered specimens with the flat layout had the best appearance, green, relative sintered density, and sintered tensile properties with good repeatability, while the specimens with the vertical layout were the worst. The as-sintered tensile properties of specimens with the side layout were slightly lower than those with the flat layout but significantly higher than those with the vertical layout. Moreover, the tensile properties of specimens with the flat and side layouts met the Metal Powder Industry Federation standard 35 for metal injection molding. The tensile properties and corresponding fracture surfaces can be explained in terms of the combined effect of load-bearing and stress concentration due to the pre-existence of voids at perimeters. The fracture surfaces of specimens with the vertical layout showed large defects induced during printing and voids between perimeter walls generating high stress concentration and layer delamination. The difference between tensile properties of specimens with the side and flat layouts is mainly due to the characteristic of the printing—voids in the side layout are larger and more detrimental to the mechanical properties—which was confirmed by the evidence of cracking in the fracture surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. 1. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De and W. Zhang: Prog. Mater Sci., 2018, vol. 92, pp. 112-224.

    Article  CAS  Google Scholar 

  2. M. K. Agarwala, R. van Weeren, A. Bandyopadhyay, A. Safari, S. C. Danforth and W. R. Priedeman: In 1996 International Solid Freeform Fabrication Symposium, 1996.

  3. 3. J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota and C. Holzer: Materials, 2018, vol. 11, art. no. 840.

    Article  Google Scholar 

  4. S. Riecker, J. Clouse, T. Studnitzky, O. Andersen and B. Kieback: In: World PM2016-AM-Deposition Technologies, 2016.

  5. 5. H. Gong, D. Snelling, K. Kardel and A. Carrano: JOM, 2019, vol. 71, pp. 880-885.

    Article  CAS  Google Scholar 

  6. 6. I.-H. Lee and Y.-G. Kim: Indian J Sci Technol, 2015, vol. 8, pp. 70–73.

    Article  Google Scholar 

  7. 7. J. Gonzalez-Gutierez, D. Godec, R. Guráň, M. Spoerk, C. Kukla and C. Holzer: Metalurgija, 2018, vol. 57, pp. 117-120.

    CAS  Google Scholar 

  8. 8. P. Singh, V. K. Balla, A. Tofangchi, S. V. Atre and K. H. Kate: Int J Refract Hard Met, 2020, vol. 91, art. no. 105249.

    Article  CAS  Google Scholar 

  9. 9. J. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C. Kukla and C. Holzer: Mater. Lett, 2019, vol. 248, pp. 165-168.

    Article  CAS  Google Scholar 

  10. 10. T. Kurose, Y. Abe, M. VA Santos, Y. Kanaya, A. Ishigami, S. Tanaka and H. Ito: Materials, 2020, vol. 13, art. no. 2493.

    Article  CAS  Google Scholar 

  11. Y. Thompson, J. Gonzalez-Gutierrez, C. Kukla, and P. Felfer: Addit. Manuf., 2019, vol. 30, p. 100861.

    CAS  Google Scholar 

  12. J. Gonzalez-Gutierrez, D. Godec, C. Kukla, T. Schlauf, C. Burkhardt and C. Holzer: In CIM, 2017.

  13. 13. Z. Zhang, B. Chu, L. Wang and Z. Lu: J. Alloys Compd, 2019, vol. 791, pp. 166-175.

    Article  CAS  Google Scholar 

  14. 14. T.-M. Wang, J.-T. Xi and Y. Jin: Int. J. Adv. Manuf. Technol., 2007, vol. 33, pp. 1087-1096.

    Article  Google Scholar 

  15. R. Devicharan and R. Garg: In 3D Printing and Additive Manufacturing Technologies, Springer Nature Singapore Pte Ltd., 2019, pp. 187–94.

  16. 16. K. Murray, A. J. Coleman, T. A. Tingskog and D. T. Whychell: Int J Powder Metall, 2011, vol. 47, pp. 21-28.

    CAS  Google Scholar 

  17. MPIF standard 35, Material Standards for Metal Injection Molded Parts, Princeton, NJ, Metal Powder Industries Federation, 2016.

  18. Card 00-054-0331, 410L—Stainless Steel, Ferrite, The International Centre for Diffraction Data® (ICDD®).

  19. 19. A. Manonukul, S. Songkuea, P. Moonchaleanporn and M. Tange: Int J Miner Metall Mater, 2017, vol. 24, pp. 1384-1393.

    Article  CAS  Google Scholar 

  20. 20. T. Bada, H. Miura, T. Honda and Y. Tokuyama, J Jpn Soc Powder Powder Metall, 1995, vol. 42, pp. 1119-1123.

    Article  Google Scholar 

  21. 21. M.-W. Wu, Z.-K. Huang, C.-F. Tseng and K.-S. Hwang: Met Mater Int, 2015, vol. 21, pp. 531-537.

    Article  CAS  Google Scholar 

  22. 22. C.-Y. Chung and Y.-C. Tzeng: Mater. Lett, 2019, vol. 237, pp. 228-231.

    Article  CAS  Google Scholar 

  23. 23. P. Wang, S. P. Lu, N. M. Xiao, D. Z. Li and Y. Y. Li: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3210-3216.

    Article  Google Scholar 

  24. 24. C.-W. Chang, P.-H. Chen and K.-S. Hwang: Mater, 2010, vol. 51, pp. 2243-2250.

    CAS  Google Scholar 

  25. 25. R. Oro, M. Campos, C. Gierl-Mayer, H. Danninger and J. M. Torralba: Metall Mater Trans A, 2015, vol. 46, pp. 1349-1359.

    Article  Google Scholar 

  26. 26. F. Bron, J. Besson and A. Pineau: Mater. Sci. Eng. A, 2004, vol. 380, pp. 356-364.

    Article  Google Scholar 

  27. T. Ebel: Handbook of Metal Injection Molding, Woodhead Publishing limited, 2012, pp. 415–445.

  28. 28. S. A. Tronvoll, T. Welo and C. W. Elverum: Int. J. Adv. Manuf. Technol., 2018, vol. 97, pp. 3607-3618.

    Article  Google Scholar 

  29. T. L. Anderson: Fracture mechanics: fundamentals and applications., CRC Press, 2017.

  30. J. C. Riddick, M. A. Haile, R. Von Wahlde, D. P. Cole, O. Bamiduro and T. E. Johnson: Addit. Manuf, 2016, vol. 11, pp. 49–59.

    CAS  Google Scholar 

  31. 31. A. Garg and A. Bhattacharya: Int. J. Mech. Sci., 2017, vol. 120, pp. 225-236.

    Article  Google Scholar 

  32. 32. S. K. Hyun, K. Murakami and H. Nakajima: Mater. Sci. Eng. A, 2001, vol. 299, pp. 241-248.

    Article  Google Scholar 

  33. 33. A. R. Boccaccini, G. Ondracek and E. Mombello: J. Mater. Sci. Lett., 1996, vol. 15, pp. 534-536.

    Article  CAS  Google Scholar 

  34. 34. M. Eudier: Powder Metall, 1962, vol. 5, pp. 278-290.

    Article  Google Scholar 

  35. 35. H. Nakajima: Prog. Mater Sci., 2007, vol. 52, pp. 1091-1173.

    Article  CAS  Google Scholar 

  36. W. D. Pilkey, D. F. Pilkey and Z. Bi: Peterson’s stress concentration factors., John Wiley & Sons, New York, 2020.

    Book  Google Scholar 

  37. 37. Y. Guan and Y. Li: Appl. Sci., 2018, vol. 8, art. no. 2619.

    Article  CAS  Google Scholar 

  38. 38. A. M. Kanvinde and G. G. Deierlein: J. Struct. Eng., 2006, vol. 132, pp. 1907-1918.

    Article  Google Scholar 

Download references

Acknowledgment

This work is financially supported by National Metal and Materials Technology Center (MTEC) and Septillion Co., Ltd., Thailand (Grant No. P1952439). The authors sincerely thank Mr. Sukrit Songkuea (MTEC) for experimental supports and Dr. John T.H. Pearce for valuable discussions and proof reading.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chanun Suwanpreecha or Anchalee Manonukul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 15, 2020; accepted February 14, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwanpreecha, C., Seensattayawong, P., Vadhanakovint, V. et al. Influence of Specimen Layout on 17-4PH (AISI 630) Alloys Fabricated by Low-Cost Additive Manufacturing. Metall Mater Trans A 52, 1999–2009 (2021). https://doi.org/10.1007/s11661-021-06211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06211-x

Navigation