Skip to main content

Advertisement

Log in

Ti-Cu-Zr-Fe-Sn-Si-Ag-Pd Bulk Metallic Glasses with Potential for Biomedical Applications

  • Topical Collection: Innovations in High Entropy Alloys and Bulk Metallic Glasses
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti47Cu38−xZr7.5Fe2.5Sn2Si1Ag2Pdx (x = 1, 2, 3, and 4 atomic percent, at. pct) bulk metallic glasses (BMGs) with potential for biomedical applications were fabricated by copper-mold casting. The Ti-based BMGs exhibited high glass-forming ability (GFA) with critical diameters of 4 to 5 mm and a supercooled liquid region over 50 K, though the high contents of Pd slightly decreased the GFA. The additions of 2 and 3 at. pct Pd benefited the improvement of plasticity, and the resultant BMGs showed the relatively low Young’s modulus of about 100 GPa, high compressive strengths of 2174 to 2340 MPa, and compressive plastic strain of around 4 pct. The addition of Pd also decreased the passive current density and increased the pitting potential of the Ti-based BMGs in the Hank’s solution, leading to the enhanced bio-corrosion resistance of the BMGs. Furthermore, the cell adhesion, viability, and proliferation behaviors revealed that the present Ti-based BMGs possess as good biocompatibility as that of the Ti-6Al-4V alloy. These results demonstrated the potential of the Ti-Cu-Zr-Fe-Sn-Si-Ag-Pd BMGs as biomedical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. 1. H.F. Li and Y.F. Zheng: Acta Biomater., 2016, vol. 36, pp. 1-20.

    Article  Google Scholar 

  2. 2. M.D. Demetriou, A. Wiest, D.C. Hofmann, W.L. Johnson, B. Han, N. Wolfson, G.Y. Wang, and P.K. Liaw: JOM, 2010, vol. 62, pp. 83-91.

    Article  CAS  Google Scholar 

  3. 3. J. Schroers, G. Kumar, M. Thomas, S.C. Hodges, and R.T. Kyriakides: JOM, 2009, vol. 61, pp. 21-29.

    Article  CAS  Google Scholar 

  4. 4. G.Q. Xie, F.X. Qin, and S.L. Zhu: Mater. Trans., 2013, vol. 54, pp. 1314-23.

    Article  CAS  Google Scholar 

  5. 5. T.H. Li, P.C. Wong, S.F. Chang, P.H. Tsai, J.S.C. Jang, and J.C. Huang: Mater. Sci. Eng. C, 2017, vol. 75, pp. 1-6.

    Article  Google Scholar 

  6. 6. S.J. Pang, Y. Liu, H.F. Li, L.L. Sun, Y. Li, and T. Zhang: J. Alloy. Compd., 2015, vol. 625, pp. 323-27.

    Article  CAS  Google Scholar 

  7. 7. A. Kuball, O. Gross, B. Bochtler, B. Adam, L. Ruschel, M. Zamanzade, and R. Busch: J. Alloy. Compd., 2019, vol. 790, pp. 337-46.

    Article  CAS  Google Scholar 

  8. 8. S.L. Zhu, X.M. Wang, F.X. Qin, and A. Inoue: Mater. Sci. Eng. A, 2007, vol. 459, pp. 233-37.

    Article  Google Scholar 

  9. 9. Y. Liu, S.J. Pang, H.F. Li, Q. Hu, B. Chen, and T. Zhang: Intermetallics, 2016, vol. 72, pp. 36-43.

    Article  CAS  Google Scholar 

  10. 10. Y. Liu, G. Wang, H.F. Li, S.J. Pang, K.W. Chen, and T. Zhang: J. Alloy. Compd., 2016, vol. 679, pp. 341-49.

    Article  CAS  Google Scholar 

  11. 11. T. Hanawa: Sci. Tech. Adv. Mater., 2002, vol. 3, pp. 289-95.

    Article  CAS  Google Scholar 

  12. 12. U.K. Mudali, S. Baunack, J. Eckert, L. Schultz, and A. Gebert: J. Alloy. Compd., 2004, vol. 377, pp. 290-97.

    Article  Google Scholar 

  13. 13. W.H. Wang: Prog. Mater. Sci., 2007, vol. 52, pp. 540-96.

    Article  CAS  Google Scholar 

  14. 14. C.T. Liu, and Z.P. Lu: Intermetallics, 2005, vol. 13, pp. 415-18.

    Article  CAS  Google Scholar 

  15. 15. C. Leyens, and M. Peters: Titanium and Titanium Alloys. Fundamentals and Applications, WILEY-VCH, Germany, 2003, pp. 17-20.

    Book  Google Scholar 

  16. 16. J. Saida, A.D. Setyawan, H. Kato, M. Matsushita, and A. Inoue: Mater. Trans., 2008, vol. 49, pp. 2732-36.

    Article  CAS  Google Scholar 

  17. 17. J.C. Hornez, A. Lefèvre, D. Joly, and H.F. Hildebrand: Biomol. Eng., 2002, vol. 19, pp. 103-17.

    Article  CAS  Google Scholar 

  18. 18. Y. Okazaki, and E. Gotoh: Biomaterials, 2005, vol. 26, pp. 11-21.

    Article  CAS  Google Scholar 

  19. 19. A. Inoue, N. Nishiyama, K. Amiya, T. Zhang, and T. Masumoto: Mater. Lett., 1994, vol. 19, pp. 131-35.

    Article  CAS  Google Scholar 

  20. 20. G.N. Yang, S.Q. Chen, J.L. Gu, S.F. Zhao, J.F. Li, Y. Shao, H. Wang, and K.F. Yao: Philos. Mag., 2016, vol. 96, pp. 2243-55.

    Article  CAS  Google Scholar 

  21. 21. L. Zhang, F. Jiang, Y. Zhao, and S.B. Pan: J. Mater. Res., 2010, vol. 25, pp. 283-91.

    Article  CAS  Google Scholar 

  22. 22. P. Murali, and U. Ramamurty: Acta Mater., 2005, vol. 53, pp. 1467-78.

    Article  CAS  Google Scholar 

  23. 23. A. Slipenyuk, and J. Eckert: Scr. Mater., 2004, vol. 50, pp. 39-44.

    Article  CAS  Google Scholar 

  24. 24. L.Y. Chen, A.D. Setyawan, H. Kato, A. Inoue, G.Q. Zhang, J. Saida, X.D. Wang, Q.P. Cao, and J.Z. Jiang: Scr. Mater., 2008, vol. 59, pp. 75-78.

    Article  Google Scholar 

  25. 25. D. Pan, A. Inoue, T. Sakurai, and M.W. Chen: PNAS, 2008, vol. 105, pp. 14769-72.

    Article  CAS  Google Scholar 

  26. 26. R. Tao, and Z.F. Zhang: Sci. Rep., 2013, vol. 3, pp. 1-6.

    Google Scholar 

  27. 27. G. Pan, D. Lei, J.S. Jin, S.B. Wang, X.Y. Wang, and K.F. Yao: Metals, 2016, vol. 37, pp. 1-37.

    Google Scholar 

  28. 28. M.L. Morrison, R.A. Buchanan, R.V. Leon, C.T. Liu, B.A. Green, P.K. Liaw, and J.A. Horton: J. Biomed. Mater. Res. Part A, 2005, vol. 74, pp. 430-38.

    Article  CAS  Google Scholar 

  29. 29. P. Gong, K.F. Yao, and Y. Shao: J. Alloy. Compd., 2012, vol. 536, pp. 26-29.

    Article  CAS  Google Scholar 

  30. 30. A. Leyladn, and A. Matthews: Wear, 2000, vol. 246, pp. 1-11.

    Article  Google Scholar 

  31. 31. A. Liens, B. Ter-Ovanessian, N. Courtois, D. Fabregue, and J. Chevalier: Corros. Sci., 2020, vol. 177, p. 108854.

    Article  CAS  Google Scholar 

  32. 32. J.L. Gu, S.Y. Lu, Y. Shao, and K.F. Yao: Corros. Sci., 2020, vol. 178, p. 109078.

    Article  Google Scholar 

  33. 33. L. Huang, Y. Yokoyama, W. Wu, P.K. Liaw, S.J. Pang, A. Inoue, T. Zhang, and W. He: J. Biomed. Mater. Res. B, 2012, vol. 100B, pp. 1472-82.

    Article  CAS  Google Scholar 

  34. 34. J.L. Gu, X.L. Yang, A.L. Zhang, Y. Shao, S.F. Zhao, and K.F. Yao: J. Non-Cryst. Solids, 2019, vol. 512, pp. 206-10.

    Article  CAS  Google Scholar 

  35. 35. Y. Guo, I. Bataev, K. Georgarakis, A.M. Jorge Jr., R.P. Nogueira, M. Pons, and A.R. Yavari: Intermetallics, 2015, vol. 63, pp. 86-96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support by the National Natural Science Foundation of China (No. 51671008). P. K. L. very much appreciates the supports from the National Science Foundation [DMR-1611180 and 1809640] with the program directors, Drs. Judith Yang, Gary Shiflet, and Diana Farkas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujie Pang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 22 , 2020; accepted February 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Hua, N., Liao, Z. et al. Ti-Cu-Zr-Fe-Sn-Si-Ag-Pd Bulk Metallic Glasses with Potential for Biomedical Applications. Metall Mater Trans A 52, 1559–1567 (2021). https://doi.org/10.1007/s11661-021-06183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06183-y

Navigation