Skip to main content
Log in

Condensation transition and ensemble inequivalence in the discrete nonlinear Schrödinger equation

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The thermodynamics of the discrete nonlinear Schrödinger equation in the vicinity of infinite temperature is explicitly solved in the microcanonical ensemble by means of large-deviation techniques. A first-order phase transition between a thermalized phase and a condensed (localized) one occurs at the infinite-temperature line. Inequivalence between statistical ensembles characterizes the condensed phase, where the grand-canonical representation does not apply. The control over finite-size corrections of the microcanonical partition function allows to design an experimental test of delocalized negative-temperature states in lattices of cold atoms.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation (Springer Verlag, Berlin, 2009)

    Book  Google Scholar 

  2. H. Eisenberg, Y. Silberberg, R. Morandotti, A. Boyd, J. Aitchison, Phys. Rev. Lett. 81(16), 3383 (1998)

    Article  ADS  Google Scholar 

  3. A. Trombettoni, A. Smerzi, Phys. Rev. Lett. 86(11), 2353 (2001)

    Article  ADS  Google Scholar 

  4. R. Franzosi, R. Livi, G.L. Oppo, A. Politi, Nonlinearity 24(12), R89 (2011)

    Article  Google Scholar 

  5. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluidity, vol. 164 (Oxford University Press, Oxford, 2016)

    Book  Google Scholar 

  6. T. Mithun, Y. Kati, C. Danieli, S. Flach, Phys. Rev. Lett. 120(18), 184101 (2018)

    Article  ADS  Google Scholar 

  7. J.C. Eilbeck, M. Johansson, The Discrete Nonlinear Schrödinger Equation-20 Years on (World Scientific, Singapore, 2003)

    MATH  Google Scholar 

  8. S. Lepri, G. Casati, Phys. Rev. Lett. 106(16), 164101 (2011)

    Article  ADS  Google Scholar 

  9. S. Flach, C.R. Willis, Phys. Rep. 295(5), 181 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Flach, A.V. Gorbach, Phys. Rep. 467(1), 1 (2008)

    Article  ADS  Google Scholar 

  11. K. Rasmussen, T. Cretegny, P.G. Kevrekidis, N. Grønbech-Jensen, Phys. Rev. Lett. 84(17), 3740 (2000)

    Article  ADS  Google Scholar 

  12. R. Livi, R. Franzosi, G.L. Oppo, Phys. Rev. Lett. 97(6), 060401 (2006)

    Article  ADS  Google Scholar 

  13. S. Iubini, L. Chirondojan, G.L. Oppo, A. Politi, P. Politi, Phys. Rev. Lett. 122(8), 084102 (2019)

    Article  ADS  Google Scholar 

  14. S. Iubini, R. Franzosi, R. Livi, G.L. Oppo, A. Politi, N. J. Phys. 15(2), 023032 (2013)

    Article  Google Scholar 

  15. J. Szavits-Nossan, M.R. Evans, S.N. Majumdar, Phys. Rev. Lett. 112(2), 020602 (2014)

    Article  ADS  Google Scholar 

  16. S. Chatterjee, J. Topol. Anal. 9(04), 717 (2017)

    Article  MathSciNet  Google Scholar 

  17. R. Nandkishore, D.A. Huse, Annu. Rev. Condens. Matter Phys. 6(1), 15 (2015)

    Article  ADS  Google Scholar 

  18. D.A. Abanin, Z. Papić, Ann. Phys. 529(7), 1700169 (2017)

    Article  Google Scholar 

  19. E. Altman, Nat. Phys. 14(10), 979 (2018)

    Article  Google Scholar 

  20. G. Benettin, H. Christodoulidi, A. Ponno, J. Stat. Phys. 152(2), 195 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. V. Ros, M. Müller, A. Scardicchio, Nucl. Phys. B 891, 420 (2015)

    Article  ADS  Google Scholar 

  22. S. Iubini, A. Politi, P. Politi, J. Stat. Phys. 154(4), 1057 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Iubini, A. Politi, P. Politi, J. Stat. Mech. Theory Exp. 2017(7), 073201 (2017)

    Article  Google Scholar 

  24. M. Johansson, K.Ø. Rasmussen, Phys. Rev. E 70(6), 066610 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  25. B. Rumpf, A.C. Newell, Phys. Rev. Lett. 87(5), 054102 (2001)

    Article  ADS  Google Scholar 

  26. B. Rumpf, Phys. Rev. E 69(1), 016618 (2004)

    Article  ADS  Google Scholar 

  27. B. Rumpf, EPL (Europhys. Lett.) 78(2), 26001 (2007)

    Article  ADS  Google Scholar 

  28. B. Rumpf, Phys. Rev. E 77(3), 036606 (2008)

    Article  ADS  Google Scholar 

  29. B. Rumpf, Phys. D Nonlinear Phenom. 238(20), 2067 (2009)

    Article  ADS  Google Scholar 

  30. J. Barré, L. Mangeolle, J. Stat. Mech. Theory Exp. 2018(4), 043211 (2018)

    Article  Google Scholar 

  31. A.Y. Cherny, T. Engl, S. Flach, Phys. Rev. A 99(2), 023603 (2019)

    Article  ADS  Google Scholar 

  32. J. Szavits-Nossan, M.R. Evans, S.N. Majumdar, J. Phys. A Math. Theor. 47(45), 455004 (2014)

    Article  ADS  Google Scholar 

  33. G. Gradenigo, E. Bertin, Entropy 19(10), 517 (2017)

    Article  ADS  Google Scholar 

  34. G. Gradenigo, S.N. Majumdar, J. Stat. Mech. Theory Exp. 2019(5), 053206 (2019)

    Article  Google Scholar 

  35. G. Gradenigo, S. Iubini, R. Livi, S.N. Majumdar, J. Stat. Mech. Theory Exp. 2021(2), 023201 (2021)

    Article  Google Scholar 

  36. M.R. Evans, T. Hanney, J. Phys. A Math. Gen. 38(19), R195 (2005)

    Article  ADS  Google Scholar 

  37. S.N. Majumdar, Exact Methods in Low-dimensional Statistical Physics and Quantum Computing: Lecture Notes of the Les Houches Summer School: Volume 89, July 2008 p. 407 (2010)

  38. O. Morsch, M. Oberthaler, Rev. Mod. Phys. 78(1), 179 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank for interesting discussions M. Baiesi, S. Franz, L. Leuzzi, G. Parisi, P. Politi, F. Ricci-Tersenghi, L. Salasnich, A. Scardicchio, F. Seno and A. Vulpiani. G.G. acknowledges the financial support of the Simons Foundation (Grant No. 454949, Giorgio Parisi) and the hospitality of “Sapienza”, University of Rome, for the first stages of this work. S.I. acknowledges support from Progetto di Ricerca Dipartimentale BIRD173122/17 of the University of Padova. R.L. acknowledges partial support from project MIUR-PRIN2017 Coarse-grained description for non-equilibrium systems and transport phenomena (CO- NEST) n. 201798CZL.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to the work.

Corresponding author

Correspondence to Giacomo Gradenigo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gradenigo, G., Iubini, S., Livi, R. et al. Condensation transition and ensemble inequivalence in the discrete nonlinear Schrödinger equation. Eur. Phys. J. E 44, 29 (2021). https://doi.org/10.1140/epje/s10189-021-00046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00046-5

Navigation