Skip to main content
Log in

Variation of electron loss rate due to recombination processes in the upper ionospheric D-region plasma after a solar X-ray flare: a study case

  • Regular Article - PLASMA PHYSICS
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we study electron loss rate resulting from recombination processes in the upper part of the ionospheric D-region after being influenced by a solar X-ray flare activity. We analyse the altitude and time dependences of the governing plasma electron loss rate and its spatial and temporal derivatives. The presented numerical modelling is based on data recorded through remote sensing of the lower ionosphere utilizing the reflected very low-frequency radio signal emitted by the DHO transmitter in Germany and received in Belgrade, Serbia. Ionospheric parameters were calculated by a procedure based on a comparison of the observed changes in the signal amplitude and phase with their values modelled by the Long-Wave Propagation Capability numerical model. We consider the time period after influence of the solar X-ray flare of the class C8.8 occurred on 5 May, 2010 between 11:37 UT and 11:58 UT with the maximum at 11:52 UT. Due to the same tendencies of the D-region plasma parameters variation, the obtained conclusions can be extended and generalized to any solar X-ray flare.

Graphic Abstract)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data for this paper collected by the GOES-14 satellite are available at NOAA’s National Centers for Environmental information (http://satdat.ngdc.noaa.gov/sem/goes/data/new_full/2010/05/goes14/csv). Requests for the VLF data used for analysis can be directed to the corresponding author.]

References

  1. V. Srećković, D. Šulić, V. Vujičić, D. Jevremović, Y. Vyklyuk, J. Geograph. Inst. Cvijic 67, 221 (2017)

    Article  Google Scholar 

  2. U.S. Inan, N.G. Lehtinen, R.C. Moore, K. Hurley, S. Boggs, D.M. Smith, G.J. Fishman, Geophys. Res. Lett. 34, L08103 (2007)

    Article  ADS  Google Scholar 

  3. A. Nina, S. Simić, V.A. Srećković, L.Č. Popović, Geophys. Res. Lett. 42, 8250 (2015)

    Article  ADS  Google Scholar 

  4. U.S. Inan, S.A. Cummer, R.A. Marshall, J. Geophys. Res.-Space 115, A00E36 (2010)

    Article  ADS  Google Scholar 

  5. T. Šindelářová, D. Burešová, J. Chum, Studia Geophys. Geod. 53, 403 (2009)

    Article  ADS  Google Scholar 

  6. W.B. Peter, U.S. Inan, J. Geophys. Res.-Space 110, A05305 (2005)

    Article  ADS  Google Scholar 

  7. S. Kumar, S. NaitAmor, O. Chanrion, T. Neubert, J Geophys. Res.-Space 122, 8720 (2017)

    Article  ADS  Google Scholar 

  8. A. Nina, M. Radovanović, B. Milovanović, A. Kovačević, J. Bajčetić, L.Č. Popović, Adv. Space Res. 60, 1866 (2017)

    Article  ADS  Google Scholar 

  9. P.F. Biagi, R. Piccolo, A. Ermini, S. Martellucci, C. Bellecci, M. Hayakawa, V. Capozzi, S.P. Kingsley, Nat. Hazard Earth Sys. 1, 99 (2001)

    Article  Google Scholar 

  10. S. Pulinets, K. Boyarchuk, Ionospheric precursor of earthquakes (Springer, Heidelberg, Germany, 2004)

    Google Scholar 

  11. A. Nina, S. Pulinets, P. Biagi, G. Nico, S. Mitrović, M. Radovanović, L.Č. Popović, Sci. Total Environ. 710, 136406 (2020)

    Article  ADS  Google Scholar 

  12. A. Rozhnoi, S. Shalimov, M. Solovieva, B. Levin, M. Hayakawa, S. Walker, J. Geophys. Res.-Space 117, A09313 (2012)

    Article  ADS  Google Scholar 

  13. A. Nina, G. Nico, S.T. Mitrović, V.M. Ćadež, I.R. Milošević, M. Radovanović, L.Č. Popović, Remote Sens. 13, 3 (2021)

    Google Scholar 

  14. J. Bajčetić, A. Nina, V.M. Čadež, B.M. Todorović, Therm. Sci. 19, S299 (2015)

    Article  Google Scholar 

  15. M. Todorović Drakul, V.M. Čadež, J. Bajčetić, D.B.L.C. Popović, A. Nina, Serb. Astron. J. 193, 11 (2016)

    Article  ADS  Google Scholar 

  16. A. Nina, V.M. Čadež, J. Bajčetić, S.T. Mitrović, L.Č. Popović, Solar Phys. 293, 64 (2018)

    Article  ADS  Google Scholar 

  17. A. Nina, V. Čadež, Adv. Space Res. 54, 1276 (2014)

    Article  ADS  Google Scholar 

  18. A. Nina, V. Čadež, D. Šulić, V. Srećković, V. Žigman, Nucl. Instrum. Meth. B 279, 106 (2012)

    Article  ADS  Google Scholar 

  19. M.B. Cohen, U.S. Inan, E.W. Paschal, I.E.E.E.T. Geosci, Remote 48, 3 (2010)

    Article  Google Scholar 

  20. M.A. Clilverd, C.J. Rodger, R.M. Millan, J.G. Sample, M. Kokorowski, M.P. McCarthy, T. Ulich, T. Raita, A.J. Kavanagh, E. Spanswick, J. Geophys. Res.-Space 112, A12 (2007)

    Google Scholar 

  21. A. Kolarski, D. Grubor, Adv. Space Res. 53, 1595 (2014)

    Article  ADS  Google Scholar 

  22. A.K. Singh, A. Singh, R. Singh, R. Singh, Astrophys. Space Sci. 350, 1 (2014)

    Article  ADS  Google Scholar 

  23. A. Nina, G. Nico, O. Odalović, V. Čadež, M.T. Drakul, M. Radovanović, L.Č. Popović, I.E.E.E. Geosci, Remote S. 17, 1198 (2020)

    Google Scholar 

  24. J.R. Wait, K.P. Spies, Characteristics of the Earth-Ionosphere Waveguide for VLF Radio Waves (NBS Technical Note, CO, 1964)

  25. N.R. Thomson, J. Atmos. Terr. Phys. 55, 173 (1993)

    Article  ADS  Google Scholar 

  26. J.A. Ferguson, Computer Programs for Assessment of Long-Wavelength Radio Communications, Version 2.0 (1998)

  27. D.P. Grubor, D.M. Šulić, V. Žigman, Ann. Geophys. 26, 1731 (2008)

    Article  ADS  Google Scholar 

  28. A.P. Mitra, ed., Ionospheric effects of solar flares, Vol. 46 of Astrophys. Space Sc. L., (Springer, Dordrecht, Holland, 1974)

  29. M. McEwan, F. Phillips, Chemistry of the Atmosphere, Mir Publishers (Moscow, Russia, 1978)

  30. N. Blaunstein, C. Christodoulou, Radio Propagation and Adaptive Antennas for Wireless Communication Links: Terrestrial, Atmospheric and Ionospheric (Wiley, Hoboken, New Jersey, 2006)

  31. E. Turunen, J. Tolvanen, H. Matveinen, H. Ranta, D Region Ion Chemistry Model (SCOSTEP Secretariat, Boulder, Colorado 1992)

  32. S. William, C.I. Foley, Steady-state Multi-ion Disturbed D-region Model (Environmental Research Papers Air Force Geophysics Lab., Hanscom AFB, Massachusetts, 1978)

  33. A.P. Mitra, Ionospheric Effects of Solar Flares (Mir, Moscow, Russia 1977)

  34. J.N. Rowe, Model studies of the lower ionosphere, Sci. Rep. No. 406 (Pennsylvania State University, University Park, 1972)

  35. A.C. Aikin, J.A. Kane, J. Troim, J. Geophys. Res. 69, 4621 (1964)

    Article  ADS  Google Scholar 

  36. R.E. Bourdeau, A.C. Aiken, D.J. L., The Lower Ionosphere at Solar Minimum, Greenbelt, Md.: NASA, Goddard Space Flight Center (1965)

  37. A. Osepian, S. Kirkwood, P. Dalin, V. Tereschenko, Ann. Geophys. 27, 3713 (2009)

    Article  ADS  Google Scholar 

  38. S. Chakraborty, T. Basak, Astrophys. Space Sci. 365, 184 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding provided by the Institute of Physics Belgrade and the Astronomical Observatory (the contract 451-03-68/2020-14/200002) through the grants by the Ministry of Education, Science, and Technological Development of the Republic of Serbia. The authors are grateful to the anonymous reviewers and editor for comments and suggestions that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nina.

Additional information

Advances in Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: from Biomolecules to Space Particles - SPIG 2020. Guest editors: Duško Borka, Dragana Ili, Aleksandar Milosavljevic, Christophe Nicolas, Vladimir Srećković, Luka Č. Popović, Sylwia Ptasinska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nina, A., Čadež, V.M. Variation of electron loss rate due to recombination processes in the upper ionospheric D-region plasma after a solar X-ray flare: a study case. Eur. Phys. J. D 75, 97 (2021). https://doi.org/10.1140/epjd/s10053-021-00115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00115-6

Navigation