Skip to main content
Log in

MEL Zeolites: Synthesis, Properties, and Catalytic Applications

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The review provides an analysis of the synthesis design features and the acidic and catalytic properties of MEL-type zeolites. Practicable methods for MEL zeolite synthesis are discussed, including one-step and two-step implementations of hydrothermal crystallization, crystal seed assisted synthesis, dual template synthesis, and vapor-phase crystallization to obtain nanocrystalline zeolites as isolated nanocrystals or binderless pellets. The study also provides an overview of methods for targeted control of the phase purity, chemical composition, crystal morphology/size, and acidic properties of MEL zeolite. Relationships are demonstrated between the MEL synthesis conditions and the catalytic properties of these zeolites in alkylation and disproportionation of aromatic compounds, oligomerization of lower olefins, oxidation of glycerol, amination of isobutylene, and conversion of lower alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.

Similar content being viewed by others

REFERENCES

  1. Olson, D.H., Kokotailo, G.T., Lawton, S.L., and Meier, W.M., J. Phys. Chem., 1981, vol. 85, no. 15, p. 2238. https://doi.org/10.1021/j150615a020

    Article  CAS  Google Scholar 

  2. Maesen, T.L., Schenk, M., Vlugt, T.J.H., and Smit, B., J. Catal., 2001, vol. 203, no. 2, p. 281. https://doi.org/10.1006/jcat.2001.3332

    Article  CAS  Google Scholar 

  3. Gu, Y., Cui, N., Yu, Q., Li, C., and Cui, Q., Appl Catal A: Gen., 2012, vol. 429, p. 9. https://doi.org/10.1016/j.apcata.2012.03.030

    Article  CAS  Google Scholar 

  4. Yu, Q., Cui, C., Zhang, Q., and Chen, J., J. Energy Chem., 2013, vol. 22, no. 5, p. 761. https://doi.org/10.1016/S2095-4956(13)60101-1

    Article  CAS  Google Scholar 

  5. Meng, X., Yu, Q., Gao, Y., Zhang, Q., and Li, C., Catal. Commun., 2015, vol. 61, p. 67. https://doi.org/10.1016/j.catcom.2014.12.011

    Article  CAS  Google Scholar 

  6. Vorobkalo, V.A., Popov, A.G., Rodionova, L.I., Knyazeva, E.E., and Ivanova, I.I., Petrol. Chem., 2018, vol. 58, no. 12, p. 1036. https://doi.org/10.1134/S0965544118120137

    Article  CAS  Google Scholar 

  7. Matsukata, M., Ogura, M., Osaki, T., Rao, P.R.H.P., Nomura, M., and Kikuchi, E., Top. Catal., 1999, vol. 9, nos. 1–2, p. 77. https://doi.org/10.1023/A:1019106421183

    Article  CAS  Google Scholar 

  8. Itabashi, K., Kamimura, Y., Iyoki, K., Shimojima, A., and Okubo, T., J. Am. Chem. Soc., 2012, vol. 134, no. 28, p. 11542. https://doi.org/10.1021/ja3022335

    Article  CAS  PubMed  Google Scholar 

  9. Yu, Q., Li, C., Tang, X., and Yi, H., J. Porous. Mat., 2016, vol. 23, no. 1, p. 273. https://doi.org/10.1007/s10934-015-0079-6

    Article  CAS  Google Scholar 

  10. Narayanan, S., Sultana, A., Krishna, K., Mériaudeau, P., and Naccache, C., Catal. Lett., 1995, vol. 34, nos. 1–2, p. 129. https://doi.org/10.1007/BF00808329

    Article  CAS  Google Scholar 

  11. Barrer, R.M., Denny, P.J., and Flanigen, E.M., US Patent 3306922, 1967.

  12. Argauer, R.J. and Landolt, G.R., US Patent 3702886, 1972.

  13. Chu, P., US Patent 3709979, 1973.

  14. Martens, J.A. and Jacobs, P.A., Synthesis of High-Silica Aluminosilicate Zeolites, New York: Elsevier, 1987.

  15. Fyfe, C.A., Feng, Y., Grondey, H., Kokotailo, G.T., and Mar, A., J. Phys. Chem., 1991, vol. 95, no. 9, p. 3747. https://doi.org/10.1021/j100162a057

    Article  CAS  Google Scholar 

  16. Terasaki, O., Ohsuna, T., Sakuma, H., Watanabe, D., Nakagawa, Y., and Medrud, R.C., Chem. Mater., 1996, vol. 8, no. 2, p. 463. https://doi.org/10.1021/cm950387i

    Article  CAS  Google Scholar 

  17. Njo, S.L., Koegler, J.H., van Koningsveld, H., and van de Graaf, B., Microporous Mater., 1997, vol. 8, nos. 5–6, p. 223. https://doi.org/10.1016/S0927-6513(96)00075-2

    Article  CAS  Google Scholar 

  18. Piccione, P.M., Davis, M.E., Micropor. Mesopor. Mater., 2001, vol. 49, nos. 1–3, p. 163. https://doi.org/10.1016/S1387-1811(01)00414-0

    Article  CAS  Google Scholar 

  19. Millini, R., Berti, D., Ghisletti, D., Parker, W.O.Jr., Luciano, C., and Bellussi, G., Stud. Surf. Sci. Catal. Elsevier, 2002, vol. 142, p. 61. https://doi.org/10.1016/S0167-2991(02)80012-X

    Article  Google Scholar 

  20. Valyocsik, E.W. and Rollmann, L.D., Zeolites, 1985, vol. 5, no. 2, p. 123. https://doi.org/10.1016/0144-2449(85)90084-3

    Article  CAS  Google Scholar 

  21. Na, K., Choi, M., and Ryoo, R., Micropor. Mesopor. Mater., 2013, vol. 166, p. 3. https://doi.org/10.1016/j.micromeso.2012.03.054

    Article  CAS  Google Scholar 

  22. Li, H.J., Zhou, X.D., Di, Y.H., Zhang, J.M., and Zhang, Y., Micropor. Mesopor. Mater., 2018, vol. 271, p. 146. https://doi.org/10.1016/j.micromeso.2018.05.039

    Article  CAS  Google Scholar 

  23. Chen, H.L., Ding, J., and Wang, Y.M., New J. Chem., 2014, vol. 38, no. 1, p. 308. https://doi.org/10.1039/C3NJ00785E

    Article  CAS  Google Scholar 

  24. Yu, Q., Li, C., Tang, X., and Yi, H., Ind. Eng. Chem., 2015, vol. 54, no. 7, p. 2120. https://doi.org/10.1021/ie505003g

    Article  CAS  Google Scholar 

  25. Liu, H., Zhang, S., Xie, S., Zhang, W., Xin, W., Liu, S., and Xu, L., Chinese J. Chem., 2018, vol. 39, no. 1, p. 167. https://doi.org/10.1016/S1872-2067(17)62984-X

    Article  CAS  Google Scholar 

  26. Shen, Y., Le, T.T., Li, R., and Rimer, J.D., ChemPhysChem., 2018, vol. 19, no. 4, p. 529. https://doi.org/10.1002/cphc.201700968

    Article  CAS  PubMed  Google Scholar 

  27. Shen, K., Wang, N., Chen, X., Chen, Z., Li, Y., and Chen, J., Catal. Sci. Technol., 2017, vol. 7, no. 21, p. 5143. https://doi.org/10.1039/C7CY01647F

    Article  CAS  Google Scholar 

  28. Jain, R. and Rimer, J.D., Micropor. Mesopor. Mater., 2020, vol. 300, p. 110174. https://doi.org/10.1016/j.micromeso.2020.110174

    Article  CAS  Google Scholar 

  29. Yu, Q., Chen, J., Zhang, Q., Li, C., and Cui, Q., Mater. Lett., 2014, vol. 120, p. 97. https://doi.org/10.1016/j.matlet.2014.01.059

    Article  CAS  Google Scholar 

  30. Zhang, L., Shan, W., and Ke, M., Song, Z., Catal. Commun., 2019.V. 124, p. 36. https://doi.org/10.1016/j.catcom.2019.02.025

  31. Mintova, S. and Valtchev, V., Micropor. Mesopor. Mater., 2002, vol. 55, no. 2, p. 171. https://doi.org/10.1016/S1387-1811(02)00401-8

    Article  CAS  Google Scholar 

  32. Mintova, S., Petkov, N., Karaghiosoff, K., and Bein, T., Micropor. Mesopor. Mater., 2001, vol. 50, nos. 2–3, p. 121. https://doi.org/10.1016/S1387-1811(01)00429-2

    Article  CAS  Google Scholar 

  33. Mintova, S., Petkov, N., Karaghiosoff, K., and Bein, T., Mat. Sci. Eng. C: Mater., 2002, vol. 19, nos. 1–2, p. 111. https://doi.org/10.1016/S0928-4931(01)00452-0

    Article  Google Scholar 

  34. Yu, Q., Cui, C., Zhang, Q., Chen, J., Li, Y., Sun, J., Li, C., Cui, Q., Yang, C., and Shan, H., J. Energy Chem., 2013, vol. 22, no. 5, p. 761. https://doi.org/10.1016/S2095-4956(13)60101-1

    Article  CAS  Google Scholar 

  35. Yu, Q., Tang, X., and Yi, H., Chem. Eng. J., 2017, vol. 314, p. 212. https://doi.org/10.1016/j.cej.2016.12.116

    Article  CAS  Google Scholar 

  36. Cundy, C.S. and Cox, P.A., Chem. Rev., 2003, vol. 103, no. 3, p. 663. https://doi.org/10.1021/cr020060i

    Article  CAS  PubMed  Google Scholar 

  37. Song, W., Liu, Z., Liu, L., Skov, A.L., Song, N., and Xiong, G., RSC Adv., 2015, vol. 5, no. 39, p. 31195. https://doi.org/10.1039/C5RA02493E

    Article  CAS  Google Scholar 

  38. Zhang, W., Gao, S., Xie, S., Liu, H., Zhu, X., and Shang, Y., Chinese J. Chem., 2017, vol. 38, no. 1, p. 168. https://doi.org/10.1016/S1872-2067(17)62756-6

    Article  CAS  Google Scholar 

  39. Zhang, W., Gao, S., Xie, S., Liu, H., Zhu, X., and Shang, Y., J. Energy Chem., 2017, vol. 26, no. 3, p. 380. https://doi.org/10.1016/j.jechem.2016.12.008

    Article  Google Scholar 

  40. Wang, S., Zhang, L., Li, S., Qin, Z., Shi, D., and He, S., J. Catal., 2019, vol. 377, p. 81. https://doi.org/10.1016/j.jcat.2019.07.028

    Article  CAS  Google Scholar 

  41. Liu, D., Liu, Y., Goh, E.Y.L., Chu, C.J.Y., Gwie, C.G., and Chang, J., Appl. Catal. A: Gen., 2016, vol. 523, p. 118. https://doi.org/10.1016/j.apcata.2016.05.030

    Article  CAS  Google Scholar 

  42. Zhang, L., Liu, H., Li, X., Xi, S., Wang, Y., and Xin, W., Fuel Process. Technol., 2010, vol. 91, no. 5, p. 449. https://doi.org/10.1016/j.fuproc.2009.12.003

    Article  CAS  Google Scholar 

  43. Kubů, M., Žilková, N., Zones, S.I., Chen, C.Y., and Al-Khattaf, S., Catal. Today, 2016, vol. 259, p. 97. https://doi.org/10.1016/j.cattod.2015.05.019

    Article  CAS  Google Scholar 

  44. Varvarin, A.M., Khomenko, K.M., and Brei, V.V., Fuel, 2013, vol. 106, p. 617. https://doi.org/10.1016/j.fuel.2012.10.032

    Article  CAS  Google Scholar 

  45. Jing, B., Li, J., Li, Z., Wang, S., Qin, Z., Fan, W., and Wang, J., J. Nanosci. Nanotechn., 2017, vol. 17, no. 6, p. 3680. https://doi.org/10.1166/jnn.2017.13986

    Article  CAS  Google Scholar 

  46. Bleken, F., Skistad, W., Barbera, K., Kustova, M., Bordiga, S., and Beato, P., Phys. Chem. Chem. Phys., 2011, vol. 13, no. 7, p. 2539. https://doi.org/10.1039/C0CP01982H

    Article  CAS  PubMed  Google Scholar 

  47. Derouane, E.G., Dejaifve, P., Gabelica, Z., and Védrine, J.C., Faraday Discuss. Chem. Soc., 1981, vol. 72, p. 331. https://doi.org/10.1039/DC9817200331

    Article  Google Scholar 

  48. Diguilio, E., Galarza, E.D., Domine, M.E., and Pierella, L.B., New J. Chem., 2020, vol. 44, no. 11, p. 4363. https://doi.org/10.1039/C9NJ04106K

    Article  CAS  Google Scholar 

  49. Lequitte, M., Figueras, F., Moreau, C., and Hub, S., J. Catal., 1996, vol. 163, no. 2, p. 255. https://doi.org/10.1006/jcat.1996.0326

    Article  CAS  Google Scholar 

Download references

Funding

The study described here was performed with financial support from the Russian Foundation for Basic Research (research project no. 20-33-90108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vorobkalo.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Sovremennye Molekulyarnye Sita. Advanced Molecular Sieves, 2021, Vol. 3, No. 1, pp. 53–77.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobkalo, V.A., Knyazeva, E.E. & Ivanova, I.I. MEL Zeolites: Synthesis, Properties, and Catalytic Applications. Pet. Chem. 61, 299–324 (2021). https://doi.org/10.1134/S0965544121030099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121030099

Keywords:

Navigation