Skip to main content
Log in

Optimal group size in microlending

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

Microlending, where a bank lends to a small group of people without credit histories, began with the Grameen Bank in Bangladesh, and is widely seen as the creation of Muhammad Yunus, who received the Nobel Peace Prize in recognition of his largely successful efforts. Since that time the modeling of microlending has received a fair amount of academic attention. One of the issues not yet addressed in full detail, however, is the issue of the size of the group. Some attention has nevertheless been paid using an experimental and game theory approach. We, instead, take a mathematical approach to the issue of an optimal group size, where the goal is to minimize the probability of default of the group. To do this, one has to create a model with interacting forces, and to make precise the hypotheses of the model. We show that the original choice of Muhammad Yunus, of a group size of five people, is, under the right, and, we believe, reasonable hypotheses, either close to optimal, or even at times exactly optimal, i.e., the optimal group size is indeed five people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Personal conversation of the first author in Accra, Ghana, August 22, 2018; with Prof. Dr. Olivier Menouken Pamen, of AIMS, Ghana

References

  • Ahlin, C.: The role of group size in group lending. J Dev Econ 115, 140–155 (2015)

    Article  Google Scholar 

  • Ahlin, C.: Matching patterns when group size exceeds two. Am Econ J Microecon 9(1), 352–384 (2017)

    Article  Google Scholar 

  • Armendáriz, B., Morduch, J.: The Economics of Microfinance. MIT Press, Cambridge (2010). Chap. Group lending

    Google Scholar 

  • Bond, P.: Joint liability among bank borrowers. Econ Theory 23, 383–394 (2004)

    Article  Google Scholar 

  • Bourjade, S., Schindele, I.: Group lending with endogenous group size. Econ Lett 117(3), 556–560 (2012)

    Article  Google Scholar 

  • Chowdhury, P.R.: Group-lending: sequential financing, lender monitoring and joint liability. J Dev Econ 77(2), 415–439 (2005)

    Article  Google Scholar 

  • Chowdhury, P.R.: Group-lending with sequential financing, contingent renewal and social capital. J Dev Econ 84(1), 487–506 (2007)

    Article  Google Scholar 

  • Conlin, M.: Peer group micro-lending programs in Canada and the United States. J Dev Econ 60(1), 249–269 (1999)

    Article  Google Scholar 

  • Devereux, J., Fishe, R.: An economic analysis of group lending programs in developing countries. Dev Econ 31(03), 102–121 (2007)

    Google Scholar 

  • Diener, F., Diener, M., Khodr, O., Protter, P.: Mathematical models for microlending. In: Proceedings of the 16th Mathematical Conference of Bangladesh Mathematical Society, 01 (2009)

  • Diener, M., Mauk, P.: On the implicit interest rate in the Yunus equation. Colloque à la mémoire d’Emmanuel Isambert (2007)

  • Diener, M., Santos, J.-M.B.: Randomness of interest rates in microcredit. Matimyás Matematika J Math Soc Philipp 39(2), 1–16 (2016)

    Google Scholar 

  • Giné, X., Jakiela, P., Karlan, D., Morduch, J.: Microfinance games. Am Econ J Appl Econ 2(3), 60–95 (2010)

    Article  Google Scholar 

  • Jarrow, R., Protter, P.: Fair microfinance loan rates. Int Rev Finance 19(4), 909–918 (2019)

    Article  Google Scholar 

  • Krasa, S., Villamil, A.P.: Monitoring the monitor: an incentive structure for a financial intermediary. J Econ Theory 57(1), 197–221 (1992)

    Article  Google Scholar 

  • Morduch, J.: The microfinance promise. J Econ Lit 37(4), 1569–1614 (1999)

    Article  Google Scholar 

  • Rezaei, B., Dasu, S., Ahmadi, R.: Optimal group size in joint liability contracts. Decis Anal 14(3), 204–225 (2017)

    Article  Google Scholar 

  • Stiglitz, J.E.: Peer monitoring and credit markets. World Bank Econ Rev 4(3), 351–366 (1990)

    Article  Google Scholar 

  • Tedeschi, G.A.: Here today, gone tomorrow: can dynamic incentives make microfinance more flexible? J Dev Econ 80(1), 84–105 (2006)

    Article  Google Scholar 

  • Varian, H.R.: Monitoring agents with other agents. J Inst Theor Econ (JITE)/Zeitschrift für die gesamte Staatswissenschaft, 146(1), 153–174 (1990)

  • Yunus, M.: Banker to the poor: micro-lending and the battle against world poverty. Public Affairs, a member of the Perseus Book Group (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Quintos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Philip Protter: Supported in part by NSF Grant DMS-1612758

Alejandra Quintos: Supported in part by the Fulbright-García Robles Program.

Appendices

Appendix: Proof of the theorem

Let \(\mathcal {S}(x):=\sum _{n=0}^\infty \left( \frac{1}{n+1}\right) \left( \frac{1}{n+2}\right) \left( \frac{1}{f(x)} \right) ^n \)

Note:

  • \(\mathcal {S}(x)\) is a decreasing function in x.

  • \(\mathcal {S}(x)\in \left( \frac{1}{2}, 1\right) , \ \text {for all } x\in \mathbb {R}\) because:

    $$ \frac{1}{2}< \frac{1}{2} + \sum _{n=1}^\infty \left( \frac{1}{n+1}\right) \left( \frac{1}{n+2}\right) \left( \frac{1}{f(x)} \right) ^n = \mathcal {S}(x) < \sum _{n=0}^\infty \left( \frac{1}{n+1}\right) \left( \frac{1}{n+2}\right) = 1 $$

Set \(h(x):=f(x)-xf'(x)\) and note that in (ab), h(x) is a monotone function because of condition (4b) or (4d). More explicitly:

$$ h'(x)=f'(x)-\left[ f'(x)+xf''(x) \right] = -xf''(x) >0 \ (\text {or } <0) \qquad \text {for all } x\in (a, b) $$

Moreover, the monotonicity of h(x) and condition (4a) or (4c) imply \(\frac{1}{2}<h(x)<1\)\(\text {for all } x \in (a,b)\)

In this way \(\text {for all } x\in (a,b)\):

  • Both \(\mathcal {S}(x)\) and h(x) are continuous and monotone

  • \(\mathcal {S}(x)\) is bounded between \(\left( \frac{1}{2}, 1 \right) .\) This actually holds \(\text {for all } x\in \mathbb {R}^+\)

  • h(x) increases from \(\frac{1}{2}\) to 1 (or decreases from 1 to \(\frac{1}{2}\))

Then there exists a unique \(x^*\in (a,b)\) such that

$$\begin{aligned} h(x^*)=\mathcal {S}(x^*) \end{aligned}$$
(3)

We shall see that this \(x^*\) is actually the unique maximizer. Thanks to equation (3), we have:

$$\begin{aligned} f(x^*) - x^* f'(x^*)&=\sum _{n=0}^\infty \left( \frac{1}{n+1}\right) \left( \frac{1}{n+2}\right) \left( \frac{1}{f(x^*)} \right) ^n \nonumber \\ \iff 0&= \sum _{n=0}^\infty \left( \frac{1}{n+1}\right) \left( \frac{1}{n+2}\right) \left( \frac{1}{f(x^*)} \right) ^n +x^*f'(x^*)-f(x^*) \nonumber \\&= \sum _{n=0}^\infty \left( \frac{1}{n+1}\right) \left( \frac{1}{f(x^*)} \right) ^n - \sum _{n=0}^\infty \left( \frac{1}{n+2}\right) \left( \frac{1}{f(x^*)} \right) ^n +x^*f'(x^*)-f(x^*) \nonumber \\&= \sum _{n=1}^\infty \left( \frac{1}{n}\right) \left( \frac{1}{f(x^*)} \right) ^{n-1} - \sum _{n=2}^\infty \left( \frac{1}{n}\right) \left( \frac{1}{f(x^*)} \right) ^{n-2} - f(x^*) +x^*f'(x^*) \nonumber \\&= \sum _{n=1}^\infty \left( \frac{1}{n}\right) \left( \frac{1}{f(x^*)} \right) ^{n-1} - \sum _{n=1}^\infty \left( \frac{1}{n}\right) \left( \frac{1}{f(x^*)} \right) ^{n-2} +x^*f'(x^*) \nonumber \\&= \sum _{n=1}^\infty \left( \frac{1}{n}\right) \left( \frac{1}{f(x^*)} \right) ^{n+1} - \sum _{n=1}^\infty \left( \frac{1}{n}\right) \left( \frac{1}{f(x^*)} \right) ^{n} + \frac{x^*f'(x^*)}{(f(x^*))^2} \end{aligned}$$
(4)

Now, recall we want to find a maxima for \(\left( 1-\varphi (x)\right) ^x\). This is equivalent to maximizing \(\mathcal {U}(x):= x\ln \left( 1-\varphi (x)\right) \).

Note \(\mathcal {U}'(x)= \ln \left( 1- \varphi (x) \right) - \frac{x}{1-\varphi (x)} \varphi '(x)\)

It suffices to find \(x^*\) (the maximizer) such that \(\mathcal {U}'(x^*)=0\), which is equivalent to \( g(x^*)=0 \) where \(g(x):= \left[ 1-\varphi (x) \right] \ln \left( 1-\varphi (x)\right) - x\varphi '(x)\)

Recall: \(\ln (1-y) = - \sum _{n=1}^\infty \frac{y^n}{n}\), if \(|y|<1\). Then:

$$\begin{aligned} g(x)&= \left[ 1-\varphi (x)\right] \left[ -\sum _{n=1}^\infty \frac{\varphi ^n(x)}{n} \right] - x\varphi '(x) \\&=\sum _{n=1}^\infty \frac{\varphi ^{n+1}(x)}{n} -\sum _{n=1}^\infty \frac{\varphi ^n(x)}{n} -x\varphi '(x) \\&=\sum _{n=1}^\infty \left( \frac{1}{n}\right) \left( \frac{1}{f(x)} \right) ^{n+1} - \sum _{n=1}^\infty \left( \frac{1}{n}\right) \left( \frac{1}{f(x)} \right) ^{n} + x \frac{f'(x)}{\left( f(x) \right) ^2} \end{aligned}$$

Finally, it is easy to see that this last line and (4) imply \(g(x^*) =0\) and we can conclude \(x^*\) is the unique maximizer in (ab). If ab are unique, it is clear that the maximizer is unique.

Appendix: Analysis of the example

Now, we show that the example given in (2) satisfies the conditions of the theorem.

Conditions 1 and 2 are immediate.

Condition (3): \(f'(x)>0\) \(\text {for all } x\ge 2\)

Proof of (3): \(f'(x)=px^{p-1} + \frac{1}{p} \left( \frac{1}{x}\right) \left( \ln x \right) ^{\frac{1}{p}-1} \)       As \(x\ge 2\), it is clear \(f'(x)>0\) \(\square \)

Condition (4a): There exist a and b such that \(f(a)-af'(a)=\frac{1}{2}\) and \(f(b)-bf'(b)=1\)

Proof of (4a):

Set \(h_p(x):=f(x)-xf'(x)= x^p + (\ln x)^{\frac{1}{p}} - px^p -\frac{1}{p} \left( \ln x\right) ^{\frac{1}{p}-1} = (1-p)x^p + \left( \ln x\right) ^{\frac{1}{p}-1} \left( \ln x -\frac{1}{p} \right) \)

Claim

\(h_p(x)\) is increasing in x

Proof of claim

\(\frac{\partial }{\partial x} h_p(x) =(1-p)px^{p-1} +\left( \frac{1}{p} -1 \right) \left( \ln x \right) ^{\frac{1}{p}-2} \left[ \ln x -\frac{1}{p} \right] \frac{1}{x} + \frac{1}{x} \left( \ln x \right) ^{\frac{1}{p}-1} \)

It is clear \( \left( 1- p \right) p x^{p-1} > 0 \). So, it suffices to show

$$\begin{aligned} \left( \frac{1}{p} -1 \right) \left( \ln x \right) ^{\frac{1}{p}-2} \left[ \ln x -\frac{1}{p} \right] \frac{1}{x} + \frac{1}{x} \left( \ln x \right) ^{\frac{1}{p}-1} \ge 0 \end{aligned}$$
(5)

For reasons that will become clear later, we only consider \(x\ge e\). As \(\ln x +1 \ge 2\) and \( 1 \le \frac{1}{p} \le 2\), it follows that

$$\begin{aligned} \ln x +1&\ge \frac{1}{p} \\ \frac{1}{p} \left( \ln x +1 - \frac{1}{p} \right)&\ge 0 \\ \frac{1}{p} \left( \ln x - \frac{1}{p} \right) - \left( \ln x - \frac{1}{p} \right) + \ln x&\ge 0 \\ \left( \frac{1}{p} -1 \right) \left( \ln x -\frac{1}{p} \right) + \ln x&\ge 0 \end{aligned}$$

This shows (5) and thus that \(h_p(x)\) is increasing for \(x \ge e\) \(\square \)

Claim

\(h_p(e)=(1-p) e^p + 1 - \frac{1}{p}\) is concave in p and hence there exists a local maxima, namely \(p^*\). (Recall \(\frac{1}{2} \le p \le 1\))

Proof of claim

\(\frac{\partial }{\partial p} h_p(e)= -e^p + (1-p) e^p + \frac{1}{p^2} = -pe^p + \frac{1}{p^2}\)

\(\frac{\partial ^2}{\partial p^2} h_p(e) = -e^p -pe^p - \frac{2}{p^3} < 0 \Longrightarrow \ \ h_p(e) \) is concave

Now, to find the maxima, we set the derivative equal to 0, i.e. \(\frac{\partial }{\partial p} h_p(e) = 0\)

$$\begin{aligned} 0&= -pe^p + \frac{1}{p^2} \\ 1&= p^3 e^p \\ 1&= p e^{\frac{1}{3}p} \end{aligned}$$

Set \(u = \frac{1}{3} p\), we need to solve \(u e^u = \frac{1}{3}\), which we do by using the product logarithm.

Hence \(u=W\left( \frac{1}{3} \right) \) and thus \(p^*=3W\left( \frac{1}{3} \right) \approx 0.772883 \Longrightarrow h_p(e)|_{p=0.773} \approx 0.1981 < \frac{1}{2}\)    \(\square \)

Claim

\(h_p(e) < \frac{1}{2} \ \ \text {for all } p \in \left[ \frac{1}{2}, 1 \right] \)

Proof of claim

As we have shown that \(h_p(e)\) is concave in p and that \(h_{p^*}(e) \approx 0.1981 < \frac{1}{2}\), it follows that \(h_p(e) < \frac{1}{2} \ \ \text {for all } p \in \left( \frac{1}{2}, 1 \right) \)

We only need to check the endpoints, \(h_p(e)|_{p=\frac{1}{2}} \approx -0.1756 \) and \(h_p(e)|_{p=1}=0\)    \(\square \)

Hence \(h_p(e) < \frac{1}{2} \ \ \text {for all } p\in \left[ \frac{1}{2}, 1 \right] \). This, along with \(h_p(x)\) being continuous, increasing in \(x\ge e\) and \(\lim _{x\rightarrow \infty } h_p(x)= \infty \), imply that there exists a such that \(h_p(a) = \frac{1}{2}\) and that \(a \ge e \approx 2.7 \Rightarrow a \ge 3\) \(\square \)

Claim

\(h_p(e^2) = (1-p) e^{2p} + 2^{\frac{1}{p}-1} \left( 1-\frac{1}{p} \right) \) is concave in p

Proof of claim

$$\begin{aligned}&\frac{\partial }{\partial p} h_p(e^2) = -e^{2p} + 2(1-p)e^{2p} +\left( \frac{1}{p^3} -\frac{2}{p^2} \right) (\ln 2) 2^{\frac{1}{p}-1} + \left( \frac{1}{p^2}\right) 2^{\frac{1}{p}-1}\\&\frac{\partial ^2}{\partial p^2} h_p(e^2) = -4e^{2p} + 4(1-p)e^{2p} - 2^{\frac{1}{p}} \frac{1}{p^3} + 2^{\frac{1}{p}} \left( 2 -\frac{1}{p} \right) \frac{\ln 2}{p^3} - 2^{\frac{1}{p}} \frac{\ln 2}{p^4} \\&\qquad + 2^{\frac{1}{p}-1} \left( 2-\frac{1}{p} \right) \frac{(\ln 2)^2}{p^4} \end{aligned}$$

Now we show that \(\frac{\partial ^2}{\partial p^2} h_p(e^2)<0\)

  1. 1.

    It is clear that \(-4e^{2p} + 4(1-p)e^{2p} <0\)

  2. 2.

    As \(\ln 2 <1\) and \(2-\frac{1}{p} \le 1\)

    $$\begin{aligned} \left( 2-\frac{1}{p}\right) \ln 2<&\ 1\\ -1 +\left( 2-\frac{1}{p}\right) \ln 2<&\ 0 \\ - 2^{\frac{1}{p}} \frac{1}{p^3} + 2^{\frac{1}{p}} \left( 2 -\frac{1}{p} \right) \frac{\ln 2}{p^3} <&\ 0 \end{aligned}$$
  3. 3.

    Similarly

    $$\begin{aligned} \left( 2-\frac{1}{p}\right) \frac{\ln 2}{2}<&\ 1 \\ -1 +\left( 2-\frac{1}{p}\right) \frac{\ln 2}{2}<&\ 0 \\ 2^{\frac{1}{p}} \frac{\ln 2}{p^4} + 2^{\frac{1}{p}-1} \left( 2-\frac{1}{p} \right) \frac{(\ln 2)^2}{p^4}<&\ 0 \\ \end{aligned}$$

    \(\square \)

Claim

\(h_p(e^2) \ge 1 \ \ \text {for all } p\in \left[ \frac{1}{2}, 1\right] \)

Proof of claim

As we have shown that \(h_p(e^2)\) is concave in p, it suffices to show \(h_p(e^2)|_{p=\frac{1}{2}}\ge 1\) and \(h_p(e^2)|_{p=1}\ge 1\)

  1. 1.

    \(h_p(e^2)|_{p=\frac{1}{2}} =\frac{1}{2} e > 1\) as \(e>2\)

  2. 2.

    \(h_p(e^2)|_{p=1} =1\)    \(\square \)

Hence \(h_p(e^2) \ge 1 \ \ \text {for all } p\in \left[ \frac{1}{2}, 1 \right] \). This, along with \(h_p(x)\) being continuous and increasing in x implies that there exists b such that \(h_p(b) = 1\) and that \(b \le e^2 \approx 7.4 \Rightarrow b \le 7\)    \(\square \)

Condition (4b): \(f''(x)<0\) \(\text {for all } x\in (a,b)\) for some \(a, b>0\) such that \(e\le a<b\)

Proof of (4b):

$$\begin{aligned}&f''(x)=p(p-1)x^{p-2} +\frac{1}{p}\left[ \left( \frac{1-p}{p} \right) \left( \frac{1}{x} \right) ^2 \left( \ln x \right) ^{\frac{1}{p}-2} - \left( \frac{1}{x}\right) ^2 \left( \ln x \right) ^{\frac{1}{p}-1} \right] \\&\quad = p(p-1) x^{p-2} + \frac{1}{p} \left( \frac{1}{x} \right) ^2 \left( \ln x \right) ^{\frac{1}{p}-2} \left[ \frac{1-p}{p} -\ln x \right] \end{aligned}$$
  1. 1.

    \(p(p-1)x^{p-2} \le 0\) because, by assumption \(p\le 1\).

  2. 2.

    By assumption \(1\le \frac{1}{p} \le 2\) and as \(\ln x +1 \ge 2 \) for \(x\ge e\), we get \(\frac{1}{p} \le \ln x +1\) . Hence, \(\frac{1-p}{p} - \ln x \le 0\), which implies the 2nd term is non-positive for all \(x\ge e\)             \(\square \)

Hence for \(f(x)=x^p +[\ln x]^{\frac{1}{p}}\), using our theorem, we can claim that the maximizer \(x^*\in [e, e^2] \ \text {for all } p\in \left[ \frac{1}{2}, 1\right] \). It is worth noticing that for this particular f(x), we can obtain a narrower interval in the following way:

To find the maximizer \(x^*\) of \(\left( 1-\varphi (x) \right) ^x\), we need to set the derivative equal to 0, which, as noted in the proof of the theorem, is equivalent to solving \(\left[ 1-\varphi (x) \right] \ln \left( 1-\varphi (x)\right) - x\varphi '(x) = 0 \). Using \(\varphi (x) = \frac{1}{f(x)}= \frac{1}{x^p +[\ln x]^{1/p}}\), let us define:

$$\begin{aligned} \mathcal {H}(x,p):&= \left[ 1-\varphi (x) \right] \ln \left( 1-\varphi (x)\right) - x\varphi '(x) \\&= \left( 1 - \frac{1}{x^p +[\ln x]^{\frac{1}{p}}} \right) \ln \left( 1 - \frac{1}{x^p +[\ln x]^{\frac{1}{p}}} \right) + \frac{p^2 x^p \ln x + \left( \ln x \right) ^{\frac{1}{p}}}{p \ln x \left[ x^p + \left( \ln x \right) ^{\frac{1}{p}} \right] ^2} \end{aligned}$$

Then, after fixing p, we need to find x such that \(\mathcal {H}(x, p) = 0\). As our theorem allows us to conclude that the maximizer \(x^*\in [e, e^2]\), we only need to analyze the behaviour of \(\mathcal {H}(x,p)\) when x is in such interval.

Note \(\mathcal {H}(x, p)\) is decreasing in x on the interval \(x\in [e, e^2]\) for all fixed \(p \in \left[ \frac{1}{2}, 1 \right] \). Now, we want to find a value of \(x\in [e, e^2]\) for which \(\mathcal {H}(x, p) \ge 0\) for all \(p \in \left[ \frac{1}{2}, 1 \right] \). Since this is not the case for \(x=3.5\), we choose \(x=3.4\) as such bound gives us uniform positivity for all \(p \in \left[ \frac{1}{2}, 1 \right] \)

More precisely, for fixed \(p \in \left[ \frac{1}{2}, 1\right] \) and \(\text {for all } x \le 3.4 \), we have \(\mathcal {H}(x,p) \ge \mathcal {H}(3.4,p)\), which implies

$$\begin{aligned} \mathcal {H}(x,p) \ge \min _{p} \mathcal {H}(x,p) \ge \min _{p}\mathcal {H}(3.4,p) > 0 \end{aligned}$$

Hence \(\mathcal {H}(x,p) = 0\) does not have a solution when \(x \le 3.4 \) and \( p \in \left[ \frac{1}{2}, 1\right] \). So, \({x^*}\) must be in the interval \((3.4, \infty )\).

Similarly, we want to find a value of \(x\in [3.4, e^2]\) for which \(\mathcal {H}(x, p) \le 0\) for all \(p \in \left[ \frac{1}{2}, 1 \right] \). We can check that \(x=5.2\) gives us uniform negativity for all \(p \in \left[ \frac{1}{2}, 1 \right] \). In this way we get \(\text {for all } x\ge 5.2\) and \(\text {for all } p \in \left[ \frac{1}{2}, 1\right] \):

$$ \mathcal {H}(x,p) \le \max _p\mathcal {H}(x, p) \le \max _p \mathcal {H}(5.2, p) < 0 $$

This implies that \(\mathcal {H}(x,p) = 0\) does not have a solution when \(x \ge 5.2 \) and \( p \in \left[ \frac{1}{2}, 1\right] \). Hence, we finally get a narrower interval \(x^* \in (3.4, 5.2)\) \( \text {for all } p\in \left[ \frac{1}{2}, 1\right] \)

Note that the choice of \(x=3.4\) and \(x=5.2\) as a comparison points was arbitrary as all we require is \( \mathcal {H}(x,p)\) to be positive or negative (respectively) for all \(p\in \left[ \frac{1}{2}, 1\right] \). Another options that work are any \(e\le x\le 3.486\) and \(5.135 \le x \le e^2\) respectively, but as we will round up or down to the nearest integer, we believe that using one decimal place is enough.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Protter, P., Quintos, A. Optimal group size in microlending. Ann Finance 18, 121–132 (2022). https://doi.org/10.1007/s10436-020-00382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-020-00382-0

Keywords

JEL classification

Navigation