Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Adrenal insufficiency

Abstract

Adrenal insufficiency (AI) is a condition characterized by an absolute or relative deficiency of adrenal cortisol production. Primary AI (PAI) is rare and is caused by direct adrenal failure. Secondary AI (SAI) is more frequent and is caused by diseases affecting the pituitary, whereas in tertiary AI (TAI), the hypothalamus is affected. The most prevalent form is TAI owing to exogenous glucocorticoid use. Symptoms of AI are non-specific, often overlooked or misdiagnosed, and are related to the lack of cortisol, adrenal androgen precursors and aldosterone (especially in PAI). Diagnosis is based on measurement of the adrenal corticosteroid hormones, their regulatory peptide hormones and stimulation tests. The goal of therapy is to establish a hormone replacement regimen that closely mimics the physiological diurnal cortisol secretion pattern, tailored to the patient’s daily needs. This Primer provides insights into the epidemiology, mechanisms and management of AI during pregnancy as well as challenges of long-term management. In addition, the importance of identifying life-threatening adrenal emergencies (acute AI and adrenal crisis) is highlighted and strategies for prevention, which include patient education, glucocorticoid emergency cards and injection kits, are described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adrenal gland hormones.
Fig. 2: Types of adrenal insufficiency.
Fig. 3: The physiological rhythm of cortisol and pharmacokinetic profile of hydrocortisone therapy.
Fig. 4: The renin–angiotensin–aldosterone system.
Fig. 5: Mechanisms underlying Addison disease.
Fig. 6: Adrenal steroidogenesis and 21-hydroxylase deficiency.
Fig. 7: Pathophysiological aspects of adrenal crisis.
Fig. 8: Clinical manifestations of adrenal insufficiency.

Similar content being viewed by others

References

  1. Arlt, W. & Allolio, B. Adrenal insufficiency. Lancet 361, 1881–1893 (2003).

    CAS  PubMed  Google Scholar 

  2. Ross, I. L. & Levitt, N. S. Addison’s disease symptoms–a cross sectional study in urban South Africa. PLoS ONE 8, e53526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Erichsen, M. M. et al. Clinical, immunological, and genetic features of autoimmune primary adrenal insufficiency: observations from a Norwegian registry. J. Clin. Endocrinol. Metab. 94, 4882–4890 (2009).

    CAS  PubMed  Google Scholar 

  4. Afreen, B., Khan, K. A. & Riaz, A. Adrenal insufficiency in Pakistani HIV infected patients. J. Ayub Med. Coll. Abbottabad 29, 428–431 (2017).

    PubMed  Google Scholar 

  5. Mofokeng, T. R. P., Beshyah, S. A., Mahomed, F., Ndlovu, K. C. Z. & Ross, I. L. Significant barriers to diagnosis and management of adrenal insufficiency in Africa. Endocr. Connect. 9, 445–456 (2020).

    PubMed  PubMed Central  Google Scholar 

  6. Odeniyi, I. A., Fasanmade, O. A., Ajala, M. O. & Ohwovoriole, A. E. Adrenocortical function in Nigerians with human immunodeficiency virus infection. Ghana. Med. J. 47, 171–177 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tripathy, S. K., Agrawala, R. K. & Baliarsinha, A. K. Endocrine alterations in HIV-infected patients. Indian. J. Endocrinol. Metab. 19, 143–147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Broersen, L. H., Pereira, A. M., Jorgensen, J. O. & Dekkers, O. M. Adrenal insufficiency in corticosteroids use: systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 100, 2171–2180 (2015).

    CAS  PubMed  Google Scholar 

  9. Bleicken, B., Hahner, S., Ventz, M. & Quinkler, M. Delayed diagnosis of adrenal insufficiency is common: a cross-sectional study in 216 patients. Am. J. Med. Sci. 339, 525–531 (2010).

    PubMed  Google Scholar 

  10. Allolio, B. Extensive expertise in endocrinology adrenal crisis. Eur. J. Endocrinol. 172, R115–R124 (2015).

    CAS  PubMed  Google Scholar 

  11. Hahner, S. et al. High incidence of adrenal crisis in educated patients with chronic adrenal insufficiency: a prospective study. J. Clin. Endocrinol. Metab. 100, 407–416 (2015).

    CAS  PubMed  Google Scholar 

  12. Puar, T. H., Stikkelbroeck, N. M., Smans, L. C., Zelissen, P. M. & Hermus, A. R. Adrenal crisis: still a deadly event in the 21st century. Am. J. Med. 129, 339 e331–339 e339 (2016).

    Google Scholar 

  13. Rushworth, R. L., Torpy, D. J. & Falhammar, H. Adrenal crises: perspectives and research directions. Endocrine 55, 336–345 (2017).

    CAS  PubMed  Google Scholar 

  14. Smans, L. C., Van der Valk, E. S., Hermus, A. R. & Zelissen, P. M. Incidence of adrenal crisis in patients with adrenal insufficiency. Clin. Endocrinol. 84, 17–22 (2016).

    CAS  Google Scholar 

  15. Bornstein, S. R. et al. Diagnosis and treatment of primary adrenal insufficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 364–389 (2016). Practice guidelines on the management of adrenal insufficiency from an international expert panel.

    CAS  PubMed  Google Scholar 

  16. Dunlop, D. Eighty-six cases of Addison’s disease. Br. Med. J. 2, 887–891 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Laureti, S., Vecchi, L., Santeusanio, F. & Falorni, A. Is the prevalence of Addison’s disease underestimated? J. Clin. Endocrinol. Metab. 84, 1762 (1999).

    CAS  PubMed  Google Scholar 

  18. Hellesen, A., Bratland, E. & Husebye, E. S. Autoimmune Addison’s disease – an update on pathogenesis. Ann. Endocrinol. 79, 157–163 (2018).

    Google Scholar 

  19. Mason, A. S., Meade, T. W., Lee, J. A. & Morris, J. N. Epidemiological and clinical picture of Addison’s disease. Lancet 2, 744–747 (1968).

    CAS  PubMed  Google Scholar 

  20. Olafsson, A. S. & Sigurjonsdottir, H. A. Increasing prevalence of Addison disease: results from a nationwide study. Endocr. Pract. 22, 30–35 (2016).

    PubMed  Google Scholar 

  21. Bjornsdottir, S. et al. Drug prescription patterns in patients with Addison’s disease: a Swedish population-based cohort study. J. Clin. Endocrinol. Metab. 98, 2009–2018 (2013).

    PubMed  Google Scholar 

  22. Meyer, G., Neumann, K., Badenhoop, K. & Linder, R. Increasing prevalence of Addison’s disease in German females: health insurance data 2008-2012. Eur. J. Endocrinol. 170, 367–373 (2014).

    CAS  PubMed  Google Scholar 

  23. Stewart, P. M. et al. Exploring inpatient hospitalizations and morbidity in patients with adrenal insufficiency. J. Clin. Endocrinol. Metab. 101, 4843–4850 (2016).

    CAS  PubMed  Google Scholar 

  24. Willis, A. C. & Vince, F. P. The prevalence of Addison’s disease in Coventry, UK. Postgrad. Med. J. 73, 286–288 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chantzichristos, D. et al. Incidence, prevalence and seasonal onset variation of Addison’s disease among persons with type 1 diabetes mellitus: nationwide, matched cohort studies. Eur. J. Endocrinol. 178, 113–120 (2018). A nationwide, matched, observational cohort study investigating the incidence and prevalence of primary adrenal insufficiency in Sweden.

    CAS  PubMed  Google Scholar 

  26. Betterle, C., Dal Pra, C., Mantero, F. & Zanchetta, R. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr. Rev. 23, 327–364 (2002).

    CAS  PubMed  Google Scholar 

  27. Laureti, S. et al. Levels of adrenocortical autoantibodies correlate with the degree of adrenal dysfunction in subjects with preclinical Addison’s disease. J. Clin. Endocrinol. Metab. 83, 3507–3511 (1998).

    CAS  PubMed  Google Scholar 

  28. Herndon, J., Nadeau, A. M., Davidge-Pitts, C. J., Young, W. F. & Bancos, I. Primary adrenal insufficiency due to bilateral infiltrative disease. Endocrine 62, 721–728 (2018).

    CAS  PubMed  Google Scholar 

  29. Merke, D. P. & Auchus, R. J. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. N. Engl. J. Med. 383, 1248–1261 (2020).

    CAS  PubMed  Google Scholar 

  30. White, P. C. & Speiser, P. W. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. Rev. 21, 245–291 (2000).

    CAS  PubMed  Google Scholar 

  31. Bancos, I., Hahner, S., Tomlinson, J. & Arlt, W. Diagnosis and management of adrenal insufficiency. Lancet Diabetes Endocrinol. 3, 216–226 (2015).

    PubMed  Google Scholar 

  32. Michels, A. W. & Gottlieb, P. A. Autoimmune polyglandular syndromes. Nat. Rev. Endocrinol. 6, 270–277 (2010).

    CAS  PubMed  Google Scholar 

  33. Husebye, E. S., Anderson, M. S. & Kampe, O. Autoimmune polyendocrine syndromes. N. Engl. J. Med. 378, 2543–2544 (2018).

    PubMed  Google Scholar 

  34. Dalin, F. et al. Clinical and immunological characteristics of autoimmune Addison disease: a nationwide Swedish multicenter study. J. Clin. Endocrinol. Metab. 102, 379–389 (2017).

    PubMed  Google Scholar 

  35. Reato, G. et al. Premature ovarian failure in patients with autoimmune Addison’s disease: clinical, genetic, and immunological evaluation. J. Clin. Endocrinol. Metab. 96, E1255–E1261 (2011).

    CAS  PubMed  Google Scholar 

  36. Charmandari, E., Nicolaides, N. C. & Chrousos, G. P. Adrenal insufficiency. Lancet 383, 2152–2167 (2014).

    CAS  PubMed  Google Scholar 

  37. Regal, M., Paramo, C., Sierra, S. M. & Garcia-Mayor, R. V. Prevalence and incidence of hypopituitarism in an adult Caucasian population in northwestern Spain. Clin. Endocrinol. 55, 735–740 (2001).

    CAS  Google Scholar 

  38. Bates, A. S., Van’t Hoff, W., Jones, P. J. & Clayton, R. N. The effect of hypopituitarism on life expectancy. J. Clin. Endocrinol. Metab. 81, 1169–1172 (1996).

    CAS  PubMed  Google Scholar 

  39. Tomlinson, J. W. et al. Association between premature mortality and hypopituitarism. West Midlands Prospective Hypopituitary Study Group. Lancet 357, 425–431 (2001). A prospective study including 1,014 patients with hypopituitarism investigating the total and specific-cause mortality compared with an age-matched and sex-matched UK population.

    CAS  PubMed  Google Scholar 

  40. Carosi, G. et al. Hypothalamic-pituitary axis in non-functioning pituitary adenomas: focus on the prevalence of isolated central hypoadrenalism. Neuroendocrinology 102, 267–273 (2015).

    CAS  PubMed  Google Scholar 

  41. Appelman-Dijkstra, N. M. et al. Pituitary dysfunction in adult patients after cranial radiotherapy: systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 96, 2330–2340 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jenkins, P. J., Bates, P., Carson, M. N., Stewart, P. M. & Wass, J. A. Conventional pituitary irradiation is effective in lowering serum growth hormone and insulin-like growth factor-I in patients with acromegaly. J. Clin. Endocrinol. Metab. 91, 1239–1245 (2006).

    CAS  PubMed  Google Scholar 

  43. Knappe, U. J. et al. Fractionated radiotherapy and radiosurgery in acromegaly: analysis of 352 patients from the German Acromegaly Registry. Eur. J. Endocrinol. 182, 275–284 (2020).

    CAS  PubMed  Google Scholar 

  44. Imber, B. S., Lee, H. S., Kunwar, S., Blevins, L. S. & Aghi, M. K. Hypophysitis: a single-center case series. Pituitary 18, 630–641 (2015).

    PubMed  Google Scholar 

  45. Wang, S. et al. Primary lymphocytic hypophysitis: clinical characteristics and treatment of 50 cases in a single centre in China over 18 years. Clin. Endocrinol. 87, 177–184 (2017).

    CAS  Google Scholar 

  46. Turcu, A. F. et al. Pituitary stalk lesions: the Mayo Clinic experience. J. Clin. Endocrinol. Metab. 98, 1812–1818 (2013).

    CAS  PubMed  Google Scholar 

  47. Lu, J., Li, L., Lan, Y., Liang, Y. & Meng, H. Immune checkpoint inhibitor-associated pituitary-adrenal dysfunction: a systematic review and meta-analysis. Cancer Med. 8, 7503–7515 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Barroso-Sousa, R. et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol. 4, 173–182 (2018).

    PubMed  Google Scholar 

  49. Chang, L. S. et al. Endocrine toxicity of cancer immunotherapy targeting immune checkpoints. Endocr. Rev. 40, 17–65 (2019).

    PubMed  Google Scholar 

  50. Li, T. et al. Prevalence of opioid-induced adrenal insufficiency in patients taking chronic opioids. J. Clin. Endocrinol. Metab. 105, e3766–e3775 (2020).

    PubMed Central  Google Scholar 

  51. de Vries, F. et al. Opioids and their endocrine effects: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 105, 1020–1029 (2020).

    Google Scholar 

  52. Saeed, Z. I., Bancos, I. & Donegan, D. Current knowledge and practices of heath care professionals on opioid-induced adrenal insufficiency. Endocr. Pract. 25, 1012–1021 (2019).

    PubMed  Google Scholar 

  53. Woods, C. P. et al. Adrenal suppression in patients taking inhaled glucocorticoids is highly prevalent and management can be guided by morning cortisol. Eur. J. Endocrinol. 173, 633–642 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schlaghecke, R., Kornely, E., Santen, R. T. & Ridderskamp, P. The effect of long-term glucocorticoid therapy on pituitary-adrenal responses to exogenous corticotropin-releasing hormone. N. Engl. J. Med. 326, 226–230 (1992).

    CAS  PubMed  Google Scholar 

  55. Mebrahtu, T. F. et al. Dose dependency of iatrogenic glucocorticoid excess and adrenal insufficiency and mortality: a cohort study in England. J. Clin. Endocrinol. Metab. 104, 3757–3767 (2019).

    PubMed Central  Google Scholar 

  56. Pofi, R. et al. The short Synacthen (corticotropin) test can be used to predict recovery of hypothalamo-pituitary-adrenal axis function. J. Clin. Endocrinol. Metab. 103, 3050–3059 (2018). A retrospective analysis of 776 patients with reversible causes of AI who had at least two short Synacthen tests performed to predict recovery of HPA axis function.

    PubMed  Google Scholar 

  57. Joseph, R. M., Hunter, A. L., Ray, D. W. & Dixon, W. G. Systemic glucocorticoid therapy and adrenal insufficiency in adults: a systematic review. Semin. Arthritis Rheum. 46, 133–141 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Leong, S. H., Shander, S. & Ratnasingam, J. Predicting recovery of the hypothalamic-pituitary-adrenal axis after prolonged glucocorticoid use. Endocr. Pract. 24, 14–20 (2018).

    PubMed  Google Scholar 

  59. Odenwald, B. et al. Children with classic congenital adrenal hyperplasia experience salt loss and hypoglycemia: evaluation of adrenal crises during the first 6 years of life. Eur. J. Endocrinol. 174, 177–186 (2016).

    CAS  PubMed  Google Scholar 

  60. Reisch, N. et al. Frequency and causes of adrenal crises over lifetime in patients with 21-hydroxylase deficiency. Eur. J. Endocrinol. 167, 35–42 (2012).

    CAS  PubMed  Google Scholar 

  61. Ritzel, K. et al. Clinical review: outcome of bilateral adrenalectomy in Cushing’s syndrome: a systematic review. J. Clin. Endocrinol. Metab. 98, 3939–3948 (2013).

    CAS  PubMed  Google Scholar 

  62. Meyer, G., Badenhoop, K. & Linder, R. Addison’s disease with polyglandular autoimmunity carries a more than 2.5-fold risk for adrenal crises: German health insurance data 2010-2013. Clin. Endocrinol. 85, 347–353 (2016).

    CAS  Google Scholar 

  63. Papierska, L. & Rabijewski, M. Delay in diagnosis of adrenal insufficiency is a frequent cause of adrenal crisis. Int. J. Endocrinol. 2013, 482370 (2013).

    PubMed  PubMed Central  Google Scholar 

  64. Gidlof, S. et al. One hundred years of congenital adrenal hyperplasia in Sweden: a retrospective, population-based cohort study. Lancet Diabetes Endocrinol. 1, 35–42 (2013).

    PubMed  Google Scholar 

  65. Bergthorsdottir, R., Leonsson-Zachrisson, M., Oden, A. & Johannsson, G. Premature mortality in patients with Addison’s disease: a population-based study. J. Clin. Endocrinol. Metab. 91, 4849–4853 (2006). A population-based, retrospective, observational study from Sweden showing that the risk ratio for death is more than twofold higher in patients with Addison disease than in the background population.

    CAS  PubMed  Google Scholar 

  66. Bensing, S. et al. Increased death risk and altered cancer incidence pattern in patients with isolated or combined autoimmune primary adrenocortical insufficiency. Clin. Endocrinol. 69, 697–704 (2008).

    Google Scholar 

  67. Erichsen, M. M. et al. Normal overall mortality rate in Addison’s disease, but young patients are at risk of premature death. Eur. J. Endocrinol. 160, 233–237 (2009).

    CAS  PubMed  Google Scholar 

  68. Falhammar, H. et al. Increased mortality in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 99, E2715–E2721 (2014).

    CAS  PubMed  Google Scholar 

  69. Hahner, S. et al. Epidemiology of adrenal crisis in chronic adrenal insufficiency: the need for new prevention strategies. Eur. J. Endocrinol. 162, 597–602 (2010).

    CAS  PubMed  Google Scholar 

  70. El-Maouche, D. et al. Longitudinal assessment of illnesses, stress dosing, and illness sequelae in patients with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 103, 2336–2345 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Rushworth, R. L., Chrisp, G. L., Dean, B., Falhammar, H. & Torpy, D. J. Hospitalisation in children with adrenal insufficiency and hypopituitarism: is there a differential burden between boys and girls and between age groups? Horm. Res. Paediatr. 88, 339–346 (2017).

    CAS  PubMed  Google Scholar 

  72. Rushworth, R. L., Falhammar, H., Munns, C. F., Maguire, A. M. & Torpy, D. J. Hospital admission patterns in children with CAH: admission rates and adrenal crises decline with age. Int. J. Endocrinol. 2016, 5748264 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Rushworth, R. L. & Torpy, D. J. A descriptive study of adrenal crises in adults with adrenal insufficiency: increased risk with age and in those with bacterial infections. BMC Endocr. Disord. 14, 79 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Rushworth, R. L. & Torpy, D. J. Modern hydrocortisone replacement regimens in adrenal insufficiency patients and the risk of adrenal crisis. Horm. Metab. Res. 47, 637–642 (2015).

    CAS  PubMed  Google Scholar 

  75. Rushworth, R. L. & Torpy, D. J. Adrenal insufficiency in Australia: is it possible that the use of lower dose, short-acting glucocorticoids has increased the risk of adrenal crises? Horm. Metab. Res. 47, 427–432 (2015).

    CAS  PubMed  Google Scholar 

  76. Okamoto, M. The metabolism of cortisol in hyperthyroidism and Cushing’s syndrome. Endocrinol. Jpn. 10, 159–168 (1963).

    CAS  PubMed  Google Scholar 

  77. Fonseca, V., Brown, R., Hochhauser, D., Ginsburg, J. & Havard, C. W. Acute adrenal crisis precipitated by thyroxine. Br. Med. J. 292, 1185–1186 (1986).

    CAS  Google Scholar 

  78. Rushworth, R. L., Chrisp, G. L. & Torpy, D. J. Glucocorticoid-induced adrenal insufficiency: a study of the incidence in hospital patients and a review of peri-operative management. Endocr. Pract. 24, 437–445 (2018).

    PubMed  Google Scholar 

  79. Rushworth, R. L., Slobodian, P. & Torpy, D. J. Interruptions to supply of high-dose hydrocortisone tablets and the incidence of adrenal crises. Clin. Endocrinol. 83, 999–1000 (2015).

    Google Scholar 

  80. Gjerstad, J. K., Lightman, S. L. & Spiga, F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress 21, 403–416 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lightman, S. L. & Conway-Campbell, B. L. The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat. Rev. Neurosci. 11, 710–718 (2010).

    CAS  PubMed  Google Scholar 

  82. Roelfsema, F., Aoun, P. & Veldhuis, J. D. Pulsatile cortisol feedback on ACTH secretion is mediated by the glucocorticoid receptor and modulated by gender. J. Clin. Endocrinol. Metab. 101, 4094–4102 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Walker, J. J., Terry, J. R. & Lightman, S. L. Origin of ultradian pulsatility in the hypothalamic-pituitary-adrenal axis. Proc. Biol. Sci. 277, 1627–1633 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lightman, S. L., Birnie, M. T. & Conway-Campbell, B. L. Dynamics of ACTH and cortisol secretion and implications for disease. Endocr. Rev. 41, 470–490 (2020).

    Google Scholar 

  85. Oster, H. et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr. Rev. 38, 3–45 (2017).

    PubMed  Google Scholar 

  86. Caratti, G. et al. Glucocorticoid receptor function in health and disease. Clin. Endocrinol. 83, 441–448 (2015).

    CAS  Google Scholar 

  87. Chrousos, G. P. in Endocrinology 7th edition (eds Jameson, J. L. & De Groot, L.) 1727–1740.e5 (Elsevier, 2016).

  88. Stavreva, D. A. et al. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat. Cell Biol. 11, 1093–1102 (2009). This study showed that an ultradian administration of glucocorticoids induces cyclic GR-mediated transcriptional regulation in cultured cells and in animal models.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kalafatakis, K. et al. Ultradian rhythmicity of plasma cortisol is necessary for normal emotional and cognitive responses in man. Proc. Natl Acad. Sci. USA 115, E4091–E4100 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chan, W. L., Carrell, R. W., Zhou, A. & Read, R. J. How changes in affinity of corticosteroid-binding globulin modulate free cortisol concentration. J. Clin. Endocrinol. Metab. 98, 3315–3322 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Henley, D., Lightman, S. & Carrell, R. Cortisol and CBG – Getting cortisol to the right place at the right time. Pharmacol. Ther. 166, 128–135 (2016).

    CAS  PubMed  Google Scholar 

  92. Stowasser, M., Ahmed, A. H., Pimenta, E., Taylor, P. J. & Gordon, R. D. Factors affecting the aldosterone/renin ratio. Horm. Metab. Res. 44, 170–176 (2012).

    CAS  PubMed  Google Scholar 

  93. Atlas, S. A. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J. Manag. Care Pharm. 13, 9–20 (2007).

    PubMed  Google Scholar 

  94. Tucci, J. R., Espiner, E. A., Jagger, P. I., Pauk, G. L. & Lauler, D. P. ACTH stimulation of aldosterone secretion in normal subjects and in patients with chronic adrenocortical insufficiency. J. Clin. Endocrinol. Metab. 27, 568–575 (1967).

    CAS  PubMed  Google Scholar 

  95. Kem, D. C. et al. Plasma aldosterone response to ACTH in primary aldosteronism and in patients with low renin hypertension. J. Clin. Endocrinol. Metab. 46, 552–560 (1978).

    CAS  PubMed  Google Scholar 

  96. Bollag, W. B. Regulation of aldosterone synthesis and secretion. Compr. Physiol. 4, 1017–1055 (2014).

    PubMed  Google Scholar 

  97. Mitchell, A. L. & Pearce, S. H. Autoimmune Addison disease: pathophysiology and genetic complexity. Nat. Rev. Endocrinol. 8, 306–316 (2012).

    CAS  PubMed  Google Scholar 

  98. Winqvist, O., Karlsson, F. A. & Kampe, O. 21-Hydroxylase, a major autoantigen in idiopathic Addison’s disease. Lancet 339, 1559–1562 (1992).

    CAS  PubMed  Google Scholar 

  99. Naletto, L. et al. The natural history of autoimmune Addison’s disease from the detection of autoantibodies to development of the disease: a long follow-up study on 143 patients. Eur. J. Endocrinol. 180, 223–234 (2019).

    CAS  PubMed  Google Scholar 

  100. Dawoodji, A. et al. High frequency of cytolytic 21-hydroxylase-specific CD8+ T cells in autoimmune Addison’s disease patients. J. Immunol. 193, 2118–2126 (2014).

    CAS  PubMed  Google Scholar 

  101. Bratland, E., Skinningsrud, B., Undlien, D. E., Mozes, E. & Husebye, E. S. T cell responses to steroid cytochrome P450 21-hydroxylase in patients with autoimmune primary adrenal insufficiency. J. Clin. Endocrinol. Metab. 94, 5117–5124 (2009).

    CAS  PubMed  Google Scholar 

  102. Eriksson, D. et al. Common genetic variation in the autoimmune regulator (AIRE) locus is associated with autoimmune Addison’s disease in Sweden. Sci. Rep. 8, 8395 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Skov, J. et al. Heritability of Addison’s disease and prevalence of associated autoimmunity in a cohort of 112,100 Swedish twins. Endocrine 58, 521–527 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Loeb, R. F. Chemical changes in the blood in Addison’s disease. Science 76, 420–421 (1932).

    CAS  PubMed  Google Scholar 

  105. Han, T. S., Walker, B. R., Arlt, W. & Ross, R. J. Treatment and health outcomes in adults with congenital adrenal hyperplasia. Nat. Rev. Endocrinol. 10, 115–124 (2014).

    CAS  PubMed  Google Scholar 

  106. Kemp, S., Huffnagel, I. C., Linthorst, G. E., Wanders, R. J. & Engelen, M. Adrenoleukodystrophy – neuroendocrine pathogenesis and redefinition of natural history. Nat. Rev. Endocrinol. 12, 606–615 (2016).

    CAS  PubMed  Google Scholar 

  107. Laureti, S. et al. X-linked adrenoleukodystrophy is a frequent cause of idiopathic Addison’s disease in young adult male patients. J. Clin. Endocrinol. Metab. 81, 470–474 (1996).

    CAS  PubMed  Google Scholar 

  108. Bezman, L. & Moser, H. W. Incidence of X-linked adrenoleukodystrophy and the relative frequency of its phenotypes. Am. J. Med. Genet. 76, 415–419 (1998).

    CAS  PubMed  Google Scholar 

  109. Hannah-Shmouni, F. & Stratakis, C. A. An overview of inborn errors of metabolism manifesting with primary adrenal insufficiency. Rev. Endocr. Metab. Disord. 19, 53–67 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Narumi, S. Rare monogenic causes of primary adrenal insufficiency. Curr. Opin. Endocrinol. Diabetes Obes. 25, 172–177 (2018).

    CAS  PubMed  Google Scholar 

  111. Tanriverdi, F. et al. Pituitary dysfunction after traumatic brain injury: a clinical and pathophysiological approach. Endocr. Rev. 36, 305–342 (2015).

    CAS  PubMed  Google Scholar 

  112. Gubbi, S., Hannah-Shmouni, F., Stratakis, C. A. & Koch, C. A. Primary hypophysitis and other autoimmune disorders of the sellar and suprasellar regions. Rev. Endocr. Metab. Disord. 19, 335–347 (2018).

    CAS  PubMed  Google Scholar 

  113. Faje, A. Immunotherapy and hypophysitis: clinical presentation, treatment, and biologic insights. Pituitary 19, 82–92 (2016).

    CAS  PubMed  Google Scholar 

  114. Caturegli, P. et al. Autoimmune hypophysitis. Endocr. Rev. 26, 599–614 (2005).

    CAS  PubMed  Google Scholar 

  115. AbdelRazek, M. A., Venna, N. & Stone, J. H. IgG4-related disease of the central and peripheral nervous systems. Lancet Neurol. 17, 183–192 (2018).

    CAS  PubMed  Google Scholar 

  116. Lamprecht, A., Sorbello, J., Jang, C., Torpy, D. J. & Inder, W. J. Secondary adrenal insufficiency and pituitary dysfunction in oral/transdermal opioid users with non-cancer pain. Eur. J. Endocrinol. 179, 353–362 (2018).

    CAS  PubMed  Google Scholar 

  117. Fraser, L. A. et al. Oral opioids for chronic non-cancer pain: higher prevalence of hypogonadism in men than in women. Exp. Clin. Endocrinol. Diabetes 117, 38–43 (2009).

    CAS  PubMed  Google Scholar 

  118. Fountas, A., Van Uum, S. & Karavitaki, N. Opioid-induced endocrinopathies. Lancet Diabetes Endocrinol. 8, 68–80 (2020).

    CAS  PubMed  Google Scholar 

  119. Pekic, S. & Popovic, V. Diagnosis of endocrine disease: expanding the cause of hypopituitarism. Eur. J. Endocrinol. 176, R269–R282 (2017).

    CAS  PubMed  Google Scholar 

  120. Higham, C. E., Johannsson, G. & Shalet, S. M. Hypopituitarism. Lancet 388, 2403–2415 (2016).

    CAS  PubMed  Google Scholar 

  121. Wu, W. et al. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat. Genet. 18, 147–149 (1998).

    CAS  PubMed  Google Scholar 

  122. Jullien, N. et al. Clinical lessons learned in constitutional hypopituitarism from two decades of experience in a large international cohort. Clin. Endocrinol. 94, 277–289 (2021).

    Google Scholar 

  123. Tutunculer, F., Saka, N., Arkaya, S. C., Abbasoglu, S. & Bas, F. Evaluation of adrenomedullary function in patients with congenital adrenal hyperplasia. Horm. Res. 72, 331–336 (2009).

    CAS  PubMed  Google Scholar 

  124. Morita, S. et al. Reduced epinephrine reserve in response to insulin-induced hypoglycemia in patients with pituitary adenoma. Eur. J. Endocrinol. 157, 265–270 (2007).

    CAS  PubMed  Google Scholar 

  125. Merke, D. P. et al. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N. Engl. J. Med. 343, 1362–1368 (2000).

    CAS  PubMed  Google Scholar 

  126. Bornstein, S. R., Breidert, M., Ehrhart-Bornstein, M., Kloos, B. & Scherbaum, W. A. Plasma catecholamines in patients with Addison’s disease. Clin. Endocrinol. 42, 215–218 (1995).

    CAS  Google Scholar 

  127. Mpoy, M. & Kolanowski, J. Urinary catecholamine excretion in patients with secondary adrenocortical insufficiency. J. Endocrinol. Invest. 9, 253–255 (1986).

    CAS  PubMed  Google Scholar 

  128. Kim, M. S. et al. Decreased adrenomedullary function in infants with classical congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 99, E1597–E1601 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Geiger, A. M., Pitts, K. P., Feldkamp, J., Kirschbaum, C. & Wolf, J. M. Cortisol-dependent stress effects on cell distribution in healthy individuals and individuals suffering from chronic adrenal insufficiency. Brain Behav. Immun. 50, 241–248 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wurtman, R. J. & Axelrod, J. Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J. Biol. Chem. 241, 2301–2305 (1966).

    CAS  PubMed  Google Scholar 

  131. Ehrhart-Bornstein, M., Hinson, J. P., Bornstein, S. R., Scherbaum, W. A. & Vinson, G. P. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocr. Rev. 19, 101–143 (1998).

    CAS  PubMed  Google Scholar 

  132. To, T. T. et al. Pituitary-interrenal interaction in zebrafish interrenal organ development. Mol. Endocrinol. 21, 472–485 (2007).

    CAS  PubMed  Google Scholar 

  133. Weise, M. et al. Patients with classic congenital adrenal hyperplasia have decreased epinephrine reserve and defective glucose elevation in response to high-intensity exercise. J. Clin. Endocrinol. Metab. 89, 591–597 (2004).

    CAS  PubMed  Google Scholar 

  134. Elbelt, U., Hahner, S. & Allolio, B. Altered insulin requirement in patients with type 1 diabetes and primary adrenal insufficiency receiving standard glucocorticoid replacement therapy. Eur. J. Endocrinol. 160, 919–924 (2009).

    CAS  PubMed  Google Scholar 

  135. Orentreich, N., Brind, J. L., Rizer, R. L. & Vogelman, J. H. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J. Clin. Endocrinol. Metab. 59, 551–555 (1984).

    CAS  PubMed  Google Scholar 

  136. Korth-Schutz, S., Levine, L. S. & New, M. I. Serum androgens in normal prepubertal and pubertal children and in children with precocious adrenarche. J. Clin. Endocrinol. Metab. 42, 117–124 (1976).

    CAS  PubMed  Google Scholar 

  137. Lebbe, M. et al. The steroid metabolome in the isolated ovarian follicle and its response to androgen exposure and antagonism. Endocrinology 158, 1474–1485 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Gleicher, N., Weghofer, A. & Barad, D. H. The role of androgens in follicle maturation and ovulation induction: friend or foe of infertility treatment? Reprod. Biol. Endocrinol. 9, 116 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lang, K., Burger-Stritt, S. & Hahner, S. Is DHEA replacement beneficial in chronic adrenal failure? Best Pract. Res. Clin. Endocrinol. Metab. 29, 25–32 (2015).

    CAS  PubMed  Google Scholar 

  140. Labrie, F. et al. Structure, regulation and role of 3β-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase and aromatase enzymes in the formation of sex steroids in classical and peripheral intracrine tissues. Baillieres Clin. Endocrinol. Metab. 8, 451–474 (1994).

    CAS  PubMed  Google Scholar 

  141. Pluchino, N. et al. Neurobiology of DHEA and effects on sexuality, mood and cognition. J. Steroid Biochem. Mol. Biol. 145, 273–280 (2015).

    CAS  PubMed  Google Scholar 

  142. Arlt, W. et al. Dehydroepiandrosterone replacement in women with adrenal insufficiency. N. Engl. J. Med. 341, 1013–1020 (1999). A double-blind clinical study investigating DHEA in women with AI demonstrating improved well-being and sexuality.

    CAS  PubMed  Google Scholar 

  143. Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS  PubMed  Google Scholar 

  144. Besse, J. C. & Bass, A. D. Potentiation by hydrocortisone of responses to catecholamines in vascular smooth muscle. J. Pharmacol. Exp. Ther. 154, 224–238 (1966).

    CAS  PubMed  Google Scholar 

  145. Kalsner, S. Mechanism of hydrocortisone potentiation of responses to epinephrine and norepinephrine in rabbit aorta. Circ. Res. 24, 383–395 (1969).

    CAS  PubMed  Google Scholar 

  146. Prete, A. et al. Prevention of adrenal crisis: cortisol responses to major stress compared to stress dose hydrocortisone delivery. J. Clin. Endocrinol. Metab. 105, 2262–2274 (2020). This study provides an evidence base on the steroidogenic response of the adrenal cortex in case of major stress (major trauma, sepsis and combat stress).

    PubMed Central  Google Scholar 

  147. Udelsman, R. et al. Adaptation during surgical stress. A reevaluation of the role of glucocorticoids. J. Clin. Invest. 77, 1377–1381 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Quinkler, M., Oelkers, W., Remde, H. & Allolio, B. Mineralocorticoid substitution and monitoring in primary adrenal insufficiency. Best Pract. Res. Clin. Endocrinol. Metab. 29, 17–24 (2015).

    CAS  PubMed  Google Scholar 

  149. Munck, A., Guyre, P. M. & Holbrook, N. J. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev. 5, 25–44 (1984).

    CAS  PubMed  Google Scholar 

  150. Besedovsky, H., del Rey, A., Sorkin, E. & Dinarello, C. A. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233, 652–654 (1986).

    CAS  PubMed  Google Scholar 

  151. Barber, A. E. et al. Glucocorticoid therapy alters hormonal and cytokine responses to endotoxin in man. J. Immunol. 150, 1999–2006 (1993).

    CAS  PubMed  Google Scholar 

  152. Morrow, L. E., McClellan, J. L., Conn, C. A. & Kluger, M. J. Glucocorticoids alter fever and IL-6 responses to psychological stress and to lipopolysaccharide. Am. J. Physiol. 264, R1010–R1016 (1993).

    CAS  PubMed  Google Scholar 

  153. Koniaris, L. G., Wand, G. & Wright, T. M. TNF mediates a murine model of Addison’s crisis. Shock 15, 29–34 (2001).

    CAS  PubMed  Google Scholar 

  154. Boonen, E. et al. Reduced cortisol metabolism during critical illness. N. Engl. J. Med. 368, 1477–1488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Husebye, E. S. et al. Consensus statement on the diagnosis, treatment and follow-up of patients with primary adrenal insufficiency. J. Intern. Med. 275, 104–115 (2014).

    CAS  PubMed  Google Scholar 

  156. Buonocore, F., McGlacken-Byrne, S. M., Del Valle, I. & Achermann, J. C. Current insights into adrenal insufficiency in the newborn and young infant. Front. Pediatr. 8, 619041 (2020).

    PubMed  PubMed Central  Google Scholar 

  157. Saevik, A. B. et al. Clues for early detection of autoimmune Addison’s disease – myths and realities. J. Intern. Med. 283, 190–199 (2018).

    CAS  PubMed  Google Scholar 

  158. El-Farhan, N. et al. Method-specific serum cortisol responses to the adrenocorticotrophin test: comparison of gas chromatography-mass spectrometry and five automated immunoassays. Clin. Endocrinol. 78, 673–680 (2013).

    CAS  Google Scholar 

  159. Ueland, G. A. et al. The short cosyntropin test revisited: new normal reference range using LC-MS/MS. J. Clin. Endocrinol. Metab. 103, 1696–1703 (2018).

    PubMed  Google Scholar 

  160. Dickstein, G. et al. Adrenocorticotropin stimulation test: effects of basal cortisol level, time of day, and suggested new sensitive low dose test. J. Clin. Endocrinol. Metab. 72, 773–778 (1991).

    CAS  PubMed  Google Scholar 

  161. May, M. E. & Carey, R. M. Rapid adrenocorticotropic hormone test in practice. retrospective review. Am. J. Med. 79, 679–684 (1985).

    CAS  PubMed  Google Scholar 

  162. Oelkers, W. The role of high- and low-dose corticotropin tests in the diagnosis of secondary adrenal insufficiency. Eur. J. Endocrinol. 139, 567–570 (1998).

    CAS  PubMed  Google Scholar 

  163. Lutz, A. et al. Adrenocortical function in patients with macrometastases of the adrenal gland. Eur. J. Endocrinol. 143, 91–97 (2000).

    CAS  PubMed  Google Scholar 

  164. Mao, J. J., Dages, K. N., Suresh, M. & Bancos, I. Presentation, disease progression and outcomes of adrenal gland metastases. Clin. Endocrinol. 93, 546–554 (2020).

    CAS  Google Scholar 

  165. Petersenn, S., Honegger, J. & Quinkler, M. National German audit of diagnosis, treatment, and teaching in secondary adrenal insufficiency. Horm. Metab. Res. 49, 580–588 (2017).

    CAS  PubMed  Google Scholar 

  166. Schmidt, I. L., Lahner, H., Mann, K. & Petersenn, S. Diagnosis of adrenal insufficiency: evaluation of the corticotropin-releasing hormone test and basal serum cortisol in comparison to the insulin tolerance test in patients with hypothalamic-pituitary-adrenal disease. J. Clin. Endocrinol. Metab. 88, 4193–4198 (2003).

    CAS  PubMed  Google Scholar 

  167. Grossman, A. B. The diagnosis and management of central hypoadrenalism. J. Clin. Endocrinol. Metab. 95, 4855–4863 (2010).

    CAS  PubMed  Google Scholar 

  168. Erturk, E., Jaffe, C. A. & Barkan, A. L. Evaluation of the integrity of the hypothalamic-pituitary-adrenal axis by insulin hypoglycemia test. J. Clin. Endocrinol. Metab. 83, 2350–2354 (1998).

    CAS  PubMed  Google Scholar 

  169. Hurel, S. J. et al. The short Synacthen and insulin stress tests in the assessment of the hypothalamic-pituitary-adrenal axis. Clin. Endocrinol. 44, 141–146 (1996).

    CAS  Google Scholar 

  170. Reynolds, R. M., Stewart, P. M., Seckl, J. R. & Padfield, P. L. Assessing the HPA axis in patients with pituitary disease: a UK survey. Clin. Endocrinol. 64, 82–85 (2006).

    Google Scholar 

  171. Mukherjee, J. J. et al. A comparison of the insulin tolerance/glucagon test with the short ACTH stimulation test in the assessment of the hypothalamo-pituitary-adrenal axis in the early post-operative period after hypophysectomy. Clin. Endocrinol. 47, 51–60 (1997).

    CAS  Google Scholar 

  172. Ospina, N. S. et al. ACTH stimulation tests for the diagnosis of adrenal insufficiency: systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 101, 427–434 (2016).

    CAS  PubMed  Google Scholar 

  173. Steiner, H., Bahr, V., Exner, P. & Oelkers, P. W. Pituitary function tests: comparison of ACTH and 11-deoxy-cortisol responses in the metyrapone test and with the insulin hypoglycemia test. Exp. Clin. Endocrinol. 102, 33–38 (1994).

    CAS  PubMed  Google Scholar 

  174. Berneis, K. et al. Combined stimulation of adrenocorticotropin and compound-S by single dose metyrapone test as an outpatient procedure to assess hypothalamic-pituitary-adrenal function. J. Clin. Endocrinol. Metab. 87, 5470–5475 (2002).

    CAS  PubMed  Google Scholar 

  175. Giordano, R. et al. Hypothalamus-pituitary-adrenal axis evaluation in patients with hypothalamo-pituitary disorders: comparison of different provocative tests. Clin. Endocrinol. 68, 935–941 (2008).

    CAS  Google Scholar 

  176. Hamrahian, A. H. et al. Revised GH and cortisol cut-points for the glucagon stimulation test in the evaluation of GH and hypothalamic-pituitary-adrenal axes in adults: results from a prospective randomized multicenter study. Pituitary 19, 332–341 (2016).

    CAS  PubMed  Google Scholar 

  177. Deutschbein, T., Unger, N., Mann, K. & Petersenn, S. Diagnosis of secondary adrenal insufficiency in patients with hypothalamic-pituitary disease: comparison between serum and salivary cortisol during the high-dose short synacthen test. Eur. J. Endocrinol. 160, 9–16 (2009).

    CAS  PubMed  Google Scholar 

  178. Debono, M. et al. Salivary cortisone reflects cortisol exposure under physiological conditions and after hydrocortisone. J. Clin. Endocrinol. Metab. 101, 1469–1477 (2016).

    CAS  PubMed  Google Scholar 

  179. Thil’en, A. et al. Benefits of neonatal screening for congenital adrenal hyperplasia (21-hydroxylase deficiency) in Sweden. Pediatrics 101, E11 (1998).

    PubMed  Google Scholar 

  180. Kishore Kumar, R., Das, H. & Kini, P. Newborn screening for congenital adrenal hyperplasia in India: what do we need to watch out for? J. Obstet. Gynaecol. India 66, 415–419 (2016).

    CAS  PubMed  Google Scholar 

  181. Yanase, T. et al. Diagnosis and treatment of adrenal insufficiency including adrenal crisis: a Japan Endocrine Society clinical practice guideline [Opinion]. Endocr. J. 63, 765–784 (2016).

    PubMed  Google Scholar 

  182. Woodcock, T. et al. Guidelines for the management of glucocorticoids during the peri-operative period for patients with adrenal insufficiency: guidelines from the Association of Anaesthetists, the Royal College of Physicians and the Society for Endocrinology UK. Anaesthesia 75, 654–663 (2020).

    CAS  PubMed  Google Scholar 

  183. Grossman, A., Johannsson, G., Quinkler, M. & Zelissen, P. Therapy of endocrine disease: perspectives on the management of adrenal insufficiency: clinical insights from across Europe. Eur. J. Endocrinol. 169, R165–R175 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Debono, M. et al. Modified-release hydrocortisone to provide circadian cortisol profiles. J. Clin. Endocrinol. Metab. 94, 1548–1554 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Hahner, S. et al. Impaired subjective health status in 256 patients with adrenal insufficiency on standard therapy based on cross-sectional analysis. J. Clin. Endocrinol. Metab. 92, 3912–3922 (2007). A cross-sectional study showing that patients with AI on current standard replacement suffer from significantly impaired health-related subjective health status, irrespective of origin of disease or concomitant disease.

    CAS  PubMed  Google Scholar 

  186. Johannsson, G. et al. Improved cortisol exposure-time profile and outcome in patients with adrenal insufficiency: a prospective randomized trial of a novel hydrocortisone dual-release formulation. J. Clin. Endocrinol. Metab. 97, 473–481 (2012). A randomized trial comparing thrice-daily conventional hydrocortisone replacement with once-daily dual-release hydrocortisone.

    CAS  PubMed  Google Scholar 

  187. European Medicines Agency. Summary of Product Characteristics: Plenadren. https://www.ema.europa.eu/en/medicines/human/EPAR/plenadren (2018).

  188. Giordano, R. et al. Improvement of anthropometric and metabolic parameters, and quality of life following treatment with dual-release hydrocortisone in patients with Addison’s disease. Endocrine 51, 360–368 (2016).

    CAS  PubMed  Google Scholar 

  189. Quinkler, M., Miodini Nilsen, R., Zopf, K., Ventz, M. & Oksnes, M. Modified-release hydrocortisone decreases BMI and HbA1c in patients with primary and secondary adrenal insufficiency. Eur. J. Endocrinol. 172, 619–626 (2015).

    CAS  PubMed  Google Scholar 

  190. Isidori, A. M. et al. Effect of once-daily, modified-release hydrocortisone versus standard glucocorticoid therapy on metabolism and innate immunity in patients with adrenal insufficiency (DREAM): a single-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 6, 173–185 (2018).

    CAS  PubMed  Google Scholar 

  191. Whittle, E. & Falhammar, H. Glucocorticoid regimens in the treatment of congenital adrenal hyperplasia: a systematic review and meta-analysis. J. Endocr. Soc. 3, 1227–1245 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Lovas, K. & Husebye, E. S. Continuous subcutaneous hydrocortisone infusion in Addison’s disease. Eur. J. Endocrinol. 157, 109–112 (2007).

    PubMed  Google Scholar 

  193. Gagliardi, L. et al. Continuous subcutaneous hydrocortisone infusion therapy in Addison’s disease: a randomized, placebo-controlled clinical trial. J. Clin. Endocrinol. Metab. 99, 4149–4157 (2014).

    CAS  PubMed  Google Scholar 

  194. Nella, A. A. et al. A phase 2 study of continuous subcutaneous hydrocortisone infusion in adults with congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 101, 4690–4698 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Whitaker, M. et al. An oral multiparticulate, modified-release, hydrocortisone replacement therapy that provides physiological cortisol exposure. Clin. Endocrinol. 80, 554–561 (2014).

    CAS  Google Scholar 

  196. Mallappa, A. et al. A phase 2 study of Chronocort, a modified-release formulation of hydrocortisone, in the treatment of adults with classic congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 100, 1137–1145 (2015). Phase II study investigating the modified-release hydrocortisone formulation Chronocort in 16 adults with classic congenital adrenal hyperplasia. Twice-daily Chronocort induced cortisol profiles similar to physiological cortisol secretion.

    CAS  PubMed  Google Scholar 

  197. Merke, D. P. et al. A phase 3 study of a modified-release hydrocortisone in the treatment of congenital adrenal hyperplasia [abstract OR25-02]. J. Endocr. Soc. 4 (Suppl. 1), A107–A108 (2020).

    Google Scholar 

  198. Turcu, A. F. et al. Single-dose study of a corticotropin-releasing factor receptor-1 antagonist in women with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 101, 1174–1180 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Saevik, A. B. et al. Residual corticosteroid production in autoimmune Addison disease. J. Clin. Endocrinol. Metab. 105, 2430–2441 (2020).

    PubMed Central  Google Scholar 

  200. Pofi, R. et al. Plasma renin measurements are unrelated to mineralocorticoid replacement dose in patients with primary adrenal insufficiency. J. Clin. Endocrinol. Metab. 105, 314–326 (2020).

    Google Scholar 

  201. Oelkers, W., Diederich, S. & Bahr, V. Diagnosis and therapy surveillance in Addison’s disease: rapid adrenocorticotropin (ACTH) test and measurement of plasma ACTH, renin activity, and aldosterone. J. Clin. Endocrinol. Metab. 75, 259–264 (1992).

    CAS  PubMed  Google Scholar 

  202. Schultebraucks, K., Wingenfeld, K., Otte, C. & Quinkler, M. The role of fludrocortisone in cognition and mood in patients with primary adrenal insufficiency (Addison’s disease). Neuroendocrinology 103, 315–320 (2016).

    CAS  PubMed  Google Scholar 

  203. Esposito, D., Pasquali, D. & Johannsson, G. Primary adrenal insufficiency: managing mineralocorticoid replacement therapy. J. Clin. Endocrinol. Metab. 103, 376–387 (2018).

    PubMed  Google Scholar 

  204. Flad, T. M., Conway, J. D., Cunningham, S. K. & McKenna, T. J. The role of plasma renin activity in evaluating the adequacy of mineralocorticoid replacement in primary adrenal insufficiency. Clin. Endocrinol. 45, 529–534 (1996).

    CAS  Google Scholar 

  205. Cohen, N., Gilbert, R., Wirth, A., Casley, D. & Jerums, G. Atrial natriuretic peptide and plasma renin levels in assessment of mineralocorticoid replacement in Addison’s disease. J. Clin. Endocrinol. Metab. 81, 1411–1415 (1996).

    CAS  PubMed  Google Scholar 

  206. Oelkers, W. & L’Age, M. Control of mineralocorticoid substitution in Addison’s disease by plasma renin measurement. Klin. Wochenschr. 54, 607–612 (1976).

    CAS  PubMed  Google Scholar 

  207. Smith, S. J. et al. Evidence that patients with Addison’s disease are undertreated with fludrocortisone. Lancet 1, 11–14 (1984).

    CAS  PubMed  Google Scholar 

  208. Chortis, V. et al. Mitotane therapy in adrenocortical cancer induces CYP3A4 and inhibits 5α-reductase, explaining the need for personalized glucocorticoid and androgen replacement. J. Clin. Endocrinol. Metab. 98, 161–171 (2013).

    CAS  PubMed  Google Scholar 

  209. Johannsson, G. et al. Low dose dehydroepiandrosterone affects behavior in hypopituitary androgen-deficient women: a placebo-controlled trial. J. Clin. Endocrinol. Metab. 87, 2046–2052 (2002).

    CAS  PubMed  Google Scholar 

  210. Lovas, K. et al. Replacement of dehydroepiandrosterone in adrenal failure: no benefit for subjective health status and sexuality in a 9-month, randomized, parallel group clinical trial. J. Clin. Endocrinol. Metab. 88, 1112–1118 (2003).

    CAS  PubMed  Google Scholar 

  211. van Thiel, S. W. et al. Effects of dehydroepiandrostenedione, superimposed on growth hormone substitution, on quality of life and insulin-like growth factor I in patients with secondary adrenal insufficiency: a randomized, placebo-controlled, cross-over trial. J. Clin. Endocrinol. Metab. 90, 3295–3303 (2005).

    PubMed  Google Scholar 

  212. Gurnell, E. M. et al. Long-term DHEA replacement in primary adrenal insufficiency: a randomized, controlled trial. J. Clin. Endocrinol. Metab. 93, 400–409 (2008).

    CAS  PubMed  Google Scholar 

  213. Coles, A. J. et al. Dehydroepiandrosterone replacement in patients with Addison’s disease has a bimodal effect on regulatory (CD4+CD25hi and CD4+FoxP3+) T cells. Eur. J. Immunol. 35, 3694–3703 (2005).

    CAS  PubMed  Google Scholar 

  214. Dhatariya, K., Bigelow, M. L. & Nair, K. S. Effect of dehydroepiandrosterone replacement on insulin sensitivity and lipids in hypoadrenal women. Diabetes 54, 765–769 (2005).

    CAS  PubMed  Google Scholar 

  215. Srinivasan, M. et al. Effect of dehydroepiandrosterone replacement on lipoprotein profile in hypoadrenal women. J. Clin. Endocrinol. Metab. 94, 761–764 (2009).

    CAS  PubMed  Google Scholar 

  216. Callies, F. et al. Dehydroepiandrosterone replacement in women with adrenal insufficiency: effects on body composition, serum leptin, bone turnover, and exercise capacity. J. Clin. Endocrinol. Metab. 86, 1968–1972 (2001).

    CAS  PubMed  Google Scholar 

  217. Christiansen, J. J. et al. Very short term dehydroepiandrosterone treatment in female adrenal failure: impact on carbohydrate, lipid and protein metabolism. Eur. J. Endocrinol. 152, 77–85 (2005).

    CAS  PubMed  Google Scholar 

  218. Alkatib, A. A. et al. A systematic review and meta-analysis of randomized placebo-controlled trials of DHEA treatment effects on quality of life in women with adrenal insufficiency. J. Clin. Endocrinol. Metab. 94, 3676–3681 (2009). Meta-analysis of randomized trials of DHEA in AI showing overall small effects of DHEA on quality of life parameters and sexuality.

    CAS  PubMed  Google Scholar 

  219. Allolio, B., Arlt, W. & Hahner, S. DHEA: why, when, and how much–DHEA replacement in adrenal insufficiency. Ann. Endocrinol. 68, 268–273 (2007). Comprehensive reflection of available evidence on adrenal crisis and discussion of future directions.

    CAS  Google Scholar 

  220. Lovas, K. et al. Glucocorticoid replacement therapy and pharmacogenetics in Addison’s disease: effects on bone. Eur. J. Endocrinol. 160, 993–1002 (2009).

    PubMed  Google Scholar 

  221. Koetz, K. R., Ventz, M., Diederich, S. & Quinkler, M. Bone mineral density is not significantly reduced in adult patients on low-dose glucocorticoid replacement therapy. J. Clin. Endocrinol. Metab. 97, 85–92 (2012). Systematic assessment of BMD in 122 patients with AI demonstrating normal BMD values on low glucocorticoid replacement doses.

    CAS  PubMed  Google Scholar 

  222. Schulz, J. et al. Reduction in daily hydrocortisone dose improves bone health in primary adrenal insufficiency. Eur. J. Endocrinol. 174, 531–538 (2016).

    CAS  PubMed  Google Scholar 

  223. Bjornsdottir, S. et al. Risk of hip fracture in Addison’s disease: a population-based cohort study. J. Intern. Med. 270, 187–195 (2011).

    CAS  PubMed  Google Scholar 

  224. Ragnarsson, O., Nystrom, H. F. & Johannsson, G. Glucocorticoid replacement therapy is independently associated with reduced bone mineral density in women with hypopituitarism. Clin. Endocrinol. 76, 246–252 (2012).

    CAS  Google Scholar 

  225. Mo, D. et al. Fracture risk in adult patients treated with growth hormone replacement therapy for growth hormone deficiency: a prospective observational cohort study. Lancet Diabetes Endocrinol. 3, 331–338 (2015).

    CAS  PubMed  Google Scholar 

  226. Mazziotti, G. et al. Management of endocrine disease: risk of overtreatment in patients with adrenal insufficiency: current and emerging aspects. Eur. J. Endocrinol. 177, R231–R248 (2017).

    CAS  PubMed  Google Scholar 

  227. Falhammar, H., Filipsson Nystrom, H., Wedell, A., Brismar, K. & Thoren, M. Bone mineral density, bone markers, and fractures in adult males with congenital adrenal hyperplasia. Eur. J. Endocrinol. 168, 331–341 (2013).

    CAS  PubMed  Google Scholar 

  228. Guarnotta, V., Ciresi, A., Pillitteri, G. & Giordano, C. Improved insulin sensitivity and secretion in prediabetic patients with adrenal insufficiency on dual-release hydrocortisone treatment: a 36-month retrospective analysis. Clin. Endocrinol. 88, 665–672 (2018).

    CAS  Google Scholar 

  229. Plat, L. et al. Metabolic effects of short-term elevations of plasma cortisol are more pronounced in the evening than in the morning. J. Clin. Endocrinol. Metab. 84, 3082–3092 (1999). This study showed that elevations of evening cortisol levels could contribute to alterations in glucose tolerance, insulin sensitivity and insulin secretion.

    CAS  PubMed  Google Scholar 

  230. Filipsson, H., Monson, J. P., Koltowska-Haggstrom, M., Mattsson, A. & Johannsson, G. The impact of glucocorticoid replacement regimens on metabolic outcome and comorbidity in hypopituitary patients. J. Clin. Endocrinol. Metab. 91, 3954–3961 (2006). Large Swedish cohort–control study revealing increased risk of ischaemic heart disease with increasing steroid replacement dose in women with autoimmune Addison disease. No increase in cerebrovascular disease risk was detected.

    CAS  PubMed  Google Scholar 

  231. Skov, J., Sundstrom, A., Ludvigsson, J. F., Kampe, O. & Bensing, S. Sex-specific risk of cardiovascular disease in autoimmune Addison disease–a population-based cohort study. J. Clin. Endocrinol. Metab. 104, 2031–2040 (2019).

    PubMed  PubMed Central  Google Scholar 

  232. Falhammar, H. et al. Increased cardiovascular and metabolic morbidity in patients with 21-hydroxylase deficiency: a Swedish population-based national cohort study. J. Clin. Endocrinol. Metab. 100, 3520–3528 (2015).

    CAS  PubMed  Google Scholar 

  233. Quinkler, M. et al. Prednisolone is associated with a worse lipid profile than hydrocortisone in patients with adrenal insufficiency. Endocr. Connect. 6, 1–8 (2017).

    CAS  PubMed  Google Scholar 

  234. Han, T. S. et al. Quality of life in adults with congenital adrenal hyperplasia relates to glucocorticoid treatment, adiposity and insulin resistance: United Kingdom Congenital adrenal Hyperplasia Adult Study Executive (CaHASE). Eur. J. Endocrinol. 168, 887–893 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Han, T. S. et al. Glucocorticoid treatment regimen and health outcomes in adults with congenital adrenal hyperplasia. Clin. Endocrinol. 78, 197–203 (2013).

    CAS  Google Scholar 

  236. Behan, L. A. et al. Low-dose hydrocortisone replacement is associated with improved arterial stiffness index and blood pressure dynamics in severely adrenocorticotrophin-deficient hypopituitary male patients. Eur. J. Endocrinol. 174, 791–799 (2016).

    CAS  PubMed  Google Scholar 

  237. Werumeus Buning, J. et al. Effects of hydrocortisone on the regulation of blood pressure: results from a randomized controlled trial. J. Clin. Endocrinol. Metab. 101, 3691–3699 (2016).

    PubMed  Google Scholar 

  238. Ventura, M. et al. The spectrum of pediatric adrenal insufficiency: insights from 34 years of experience. J. Pediatr. Endocrinol. Metab. 32, 721–726 (2019).

    PubMed  Google Scholar 

  239. Sterns, R. H. Disorders of plasma sodium–causes, consequences, and correction. N. Engl. J. Med. 372, 55–65 (2015).

    PubMed  Google Scholar 

  240. Kampmeyer, D., Lehnert, H., Moenig, H., Haas, C. S. & Harbeck, B. A strong need for improving the education of physicians on glucocorticoid replacement treatment in adrenal insufficiency: an interdisciplinary and multicentre evaluation. Eur. J. Intern. Med. 33, e13–e15 (2016).

    PubMed  Google Scholar 

  241. Harbeck, B. et al. Glucocorticoid replacement therapy in adrenal insufficiency–a challenge to physicians? Endocr. J. 62, 463–468 (2015).

    CAS  PubMed  Google Scholar 

  242. Hahner, S., Burger-Stritt, S. & Allolio, B. Subcutaneous hydrocortisone administration for emergency use in adrenal insufficiency. Eur. J. Endocrinol. 169, 147–154 (2013).

    CAS  PubMed  Google Scholar 

  243. Burger-Stritt, S., Bachmann, L., Kurlbaum, M. & Hahner, S. Emergency treatment of adrenal crisis with prednisone suppositories: a bioequivalence study in female patients with Addison’s disease. Endocr. Connect. 8, 425–434 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Andela, C. D. et al. Quality of life in patients with adrenal insufficiency correlates stronger with hydrocortisone dosage, than with long-term systemic cortisol levels. Psychoneuroendocrinology 72, 80–86 (2016).

    CAS  PubMed  Google Scholar 

  245. Lovas, K., Loge, J. H. & Husebye, E. S. Subjective health status in Norwegian patients with Addison’s disease. Clin. Endocrinol. 56, 581–588 (2002). This is the first systematic assessment of subjective health status in a large cohort of patients with primary adrenal insufficiency.

    Google Scholar 

  246. Forss, M., Batcheller, G., Skrtic, S. & Johannsson, G. Current practice of glucocorticoid replacement therapy and patient-perceived health outcomes in adrenal insufficiency – a worldwide patient survey. BMC Endocr. Disord. 12, 8 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Kluger, N. et al. Impaired health-related quality of life in Addison’s disease–impact of replacement therapy, comorbidities and socio-economic factors. Clin. Endocrinol. 81, 511–518 (2014).

    CAS  Google Scholar 

  248. Tiemensma, J. et al. Psychological morbidity and impaired quality of life in patients with stable treatment for primary adrenal insufficiency: cross-sectional study and review of the literature. Eur. J. Endocrinol. 171, 171–182 (2014).

    CAS  PubMed  Google Scholar 

  249. Ragnarsson, O. et al. The relationship between glucocorticoid replacement and quality of life in 2737 hypopituitary patients. Eur. J. Endocrinol. 171, 571–579 (2014).

    CAS  PubMed  Google Scholar 

  250. Oksnes, M. et al. Quality of life in European patients with Addison’s disease: validity of the disease-specific questionnaire AddiQoL. J. Clin. Endocrinol. Metab. 97, 568–576 (2012).

    PubMed  Google Scholar 

  251. Burger-Stritt, S., Pulzer, A. & Hahner, S. Quality of life and life expectancy in patients with adrenal insufficiency: what is true and what is urban myth? Front. Horm. Res. 46, 171–183 (2016).

    PubMed  Google Scholar 

  252. Bleicken, B. et al. Impaired subjective health status in chronic adrenal insufficiency: impact of different glucocorticoid replacement regimens. Eur. J. Endocrinol. 159, 811–817 (2008).

    CAS  PubMed  Google Scholar 

  253. Bleicken, B. et al. Influence of hydrocortisone dosage scheme on health-related quality of life in patients with adrenal insufficiency. Clin. Endocrinol. 72, 297–304 (2010).

    CAS  Google Scholar 

  254. Oksnes, M. et al. Continuous subcutaneous hydrocortisone infusion versus oral hydrocortisone replacement for treatment of Addison’s disease: a randomized clinical trial. J. Clin. Endocrinol. Metab. 99, 1665–1674 (2014). Randomized clinical trial comparing continuous subcutaneous hydrocortisone infusion with conventional oral hydrocortisone in 33 patients with Addison disease showing more improvement in some quality of life parameters under more physiological cortisol profiles.

    PubMed  Google Scholar 

  255. Nilsson, A. G. et al. Long-term safety of once-daily, dual-release hydrocortisone in patients with adrenal insufficiency: a phase 3b, open-label, extension study. Eur. J. Endocrinol. 176, 715–725 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Bancos, I. et al. Primary adrenal insufficiency is associated with impaired natural killer cell function: a potential link to increased mortality. Eur. J. Endocrinol. 176, 471–480 (2017). Analysis of 42 patients with primary AI showing normal neutrophil function but significantly decreased cytotoxicity of natural killer cells which potentially compromises antiviral immune defence.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Smans, L. C., Souverein, P. C., Leufkens, H. G., Hoepelman, A. I. & Zelissen, P. M. Increased use of antimicrobial agents and hospital admission for infections in patients with primary adrenal insufficiency: a cohort study. Eur. J. Endocrinol. 168, 609–614 (2013).

    CAS  PubMed  Google Scholar 

  258. Tresoldi, A. S. et al. Increased infection risk in Addison’s disease and congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 105, 418–429 (2020).

    Google Scholar 

  259. Gan, E. H. & Pearce, S. H. Management of endocrine disease: regenerative therapies in autoimmune Addison’s disease. Eur. J. Endocrinol. 176, R123–R135 (2017).

    CAS  PubMed  Google Scholar 

  260. Balyura, M. et al. Transplantation of bovine adrenocortical cells encapsulated in alginate. Proc. Natl Acad. Sci. USA 112, 2527–2532 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Gan, E. H. et al. Residual adrenal function in autoimmune Addison’s disease: improvement after tetracosactide (ACTH1-24) treatment. J. Clin. Endocrinol. Metab. 99, 111–118 (2014).

    CAS  PubMed  Google Scholar 

  262. Pearce, S. H. et al. Adrenal steroidogenesis after B lymphocyte depletion therapy in new-onset Addison’s disease. J. Clin. Endocrinol. Metab. 97, E1927–E1932 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Napier, C. et al. Residual adrenal function in autoimmune Addison’s disease – effect of dual therapy with rituximab and depot tetracosactide. J. Clin. Endocrinol. Metab. 105, e1250–e1259 (2020).

    Google Scholar 

  264. Hahner, S. et al. Timelines in the management of adrenal crisis – targets, limits and reality. Clin. Endocrinol. 82, 497–502 (2015).

    Google Scholar 

  265. Burger-Stritt, S. et al. Management of adrenal emergencies in educated patients with adrenal insufficiency–a prospective study. Clin. Endocrinol. 89, 22–29 (2018).

    Google Scholar 

  266. Repping-Wuts, H. J., Stikkelbroeck, N. M., Noordzij, A., Kerstens, M. & Hermus, A. R. A glucocorticoid education group meeting: an effective strategy for improving self-management to prevent adrenal crisis. Eur. J. Endocrinol. 169, 17–22 (2013).

    CAS  PubMed  Google Scholar 

  267. Burger-Stritt, S. et al. Standardised patient education in adrenal insufficiency – a prospective multi-centre evaluation. Eur. J. Endocrinol. 183, 119–127 (2020). This longitudinal, prospective, questionnaire-based, multicentre study included 526 patients with AI and proved that group education of patients with chronic AI represents a helpful tool for the guidance of patients, their self-assurance and their knowledge on prevention of adrenal crises.

    CAS  PubMed  Google Scholar 

  268. Quinkler, M., Hahner, S., Johannsson, G. & Stewart, P. M. Saving lives of patients with adrenal insufficiency: a pan-European initiative? Clin. Endocrinol. 80, 319–321 (2014).

    Google Scholar 

  269. Bornstein, S. R., Bornstein, T. D. & Andoniadou, C. L. Novel medications inducing adrenal insufficiency. Nat. Rev. Endocrinol. 15, 561–562 (2019).

    PubMed  Google Scholar 

  270. Nicolaides, N. C., Chrousos, G. P. & Charmandari, E. in Endotext (eds Feingold, K. R. et al) (MDText.com, Inc, 2000).

  271. Mah, P. M. et al. Weight-related dosing, timing and monitoring hydrocortisone replacement therapy in patients with adrenal insufficiency. Clin. Endocrinol. 61, 367–375 (2004).

    CAS  Google Scholar 

  272. Bratland, E. & Husebye, E. S. Cellular immunity and immunopathology in autoimmune Addison’s disease. Mol. Cell Endocrinol. 336, 180–190 (2011).

    CAS  PubMed  Google Scholar 

  273. Rege, J., Turcu, A. F., Else, T., Auchus, R. J. & Rainey, W. E. Steroid biomarkers in human adrenal disease. J. Steroid Biochem. Mol. Biol. 190, 273–280 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Mannstadt, M. et al. Hypoparathyroidism. Nat. Rev. Dis. Prim. 3, 17055 (2017).

    PubMed  Google Scholar 

  275. Lebbe, M. & Arlt, W. What is the best diagnostic and therapeutic management strategy for an Addison patient during pregnancy? Clin. Endocrinol. 78, 497–502 (2013).

    CAS  Google Scholar 

  276. Erichsen, M. M., Husebye, E. S., Michelsen, T. M., Dahl, A. A. & Lovas, K. Sexuality and fertility in women with Addison’s disease. J. Clin. Endocrinol. Metab. 95, 4354–4360 (2010).

    PubMed  Google Scholar 

  277. Remde, H., Zopf, K., Schwander, J. & Quinkler, M. Fertility and pregnancy in primary adrenal insufficiency in Germany. Horm. Metab. Res. 48, 306–311 (2016).

    CAS  PubMed  Google Scholar 

  278. Bjornsdottir, S. et al. Addison’s disease in women is a risk factor for an adverse pregnancy outcome. J. Clin. Endocrinol. Metab. 95, 5249–5257 (2010).

    PubMed  Google Scholar 

  279. Schneiderman, M., Czuzoj-Shulman, N., Spence, A. R. & Abenhaim, H. A. Maternal and neonatal outcomes of pregnancies in women with Addison’s disease: a population-based cohort study on 7.7 million births. BJOG 124, 1772–1779 (2017).

    CAS  PubMed  Google Scholar 

  280. Bothou, C. et al. Current management and outcome of pregnancies in women with adrenal insufficiency: experience from a multicenter survey. J. Clin. Endocrinol. Metab. 105, e2853–e2863 (2020). Large retrospective multicentre analysis of the course of pregnancy in women with adrenal insufficiency.

    PubMed Central  Google Scholar 

  281. Hirschberg, A. L. et al. Reproductive and perinatal outcomes in women with congenital adrenal hyperplasia: a population-based cohort study. J. Clin. Endocrinol. Metab. 106, e957–e965 (2021).

    PubMed  Google Scholar 

  282. Quinkler, M. et al. Agonistic and antagonistic properties of progesterone metabolites at the human mineralocorticoid receptor. Eur. J. Endocrinol. 146, 789–799 (2002).

    CAS  PubMed  Google Scholar 

  283. Quinkler, M., Meyer, B., Oelkers, W. & Diederich, S. Renal inactivation, mineralocorticoid generation, and 11β-hydroxysteroid dehydrogenase inhibition ameliorate the antimineralocorticoid effect of progesterone in vivo. J. Clin. Endocrinol. Metab. 88, 3767–3772 (2003).

    CAS  PubMed  Google Scholar 

  284. Cosimo, C. & Franco, C. Addison’s disease and pregnancy: case report. J. Prenat. Med. 3, 53–54 (2009).

    PubMed  PubMed Central  Google Scholar 

  285. Oelkers, W. K. Effects of estrogens and progestogens on the renin-aldosterone system and blood pressure. Steroids 61, 166–171 (1996).

    CAS  PubMed  Google Scholar 

  286. Stirrat, L. I. et al. Transfer and metabolism of cortisol by the isolated perfused human placenta. J. Clin. Endocrinol. Metab. 103, 640–648 (2018).

    PubMed  Google Scholar 

  287. Coursin, D. B. & Wood, K. E. Corticosteroid supplementation for adrenal insufficiency. JAMA 287, 236–240 (2002).

    CAS  PubMed  Google Scholar 

  288. Li, D. et al. Determinants of self-reported health outcomes in adrenal insufficiency: a multi-site survey study. J. Clin. Endocrinol. Metab. https://doi.org/10.1210/clinem/dgaa668 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Fleming, L., Knafl, K., Knafl, G. & Van Riper, M. Parental management of adrenal crisis in children with congenital adrenal hyperplasia. J. Spec. Pediatr. Nurs. 22, e12190 (2017).

    Google Scholar 

  290. Kienitz, T., Hahner, S., Burger-Stritt, S. & Quinkler, M. Therapeutic patient education for adrenal insufficiency under COVID-19 pandemic conditions. Exp. Clin. Endocrinol. Diabetes https://doi.org/10.1055/a-1217-7208 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.H. is supported by the Deutsche Forschungsgemeinschaft (DFG) (within the CRC/Transregio 205/1 “The Adrenal: Central Relay in Health and Disease” and HA 6931/3-1). W.A. is supported by the Medical Research Council UK (programme grant G0900567). I.B. is supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the National Institutes of Health (NIH) USA under award K23DK121888. The views expressed are those of the author(s) and not necessarily those of the National Institutes of Health, USA. E.S.H. is supported by K.G. Jebsen Center of Autoimmune Disorders, The Novonordisk Foundation, The Norwegian Research Council. The authors thank S. Aslaksen for her input in creating the figure on mechanisms underlying Addison disease.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.H. and M.Q.); Epidemiology (I.B. and E.S.H.); Mechanisms/pathophysiology (S.H., E.S.H., R.J.R. and M.Q.); Diagnosis, screening and prevention (W.A. and M.Q.); Management (W.A., S.H., M.Q., R.J.R., S.B.-S. and D.J.T.); Quality of life (S.H.); Outlook (S.H., M.Q. and R.J.R.); Overview of Primer (S.H.).

Corresponding author

Correspondence to Stefanie Hahner.

Ethics declarations

Competing interests

R.J.R. is a Director of Diurnal group PLC. W.A. served as consultant and clinical investigator for Diurnal Ltd. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks L. Chan, G. Johannsson, L. Nieman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Glucocorticoids

A class of corticosteroids that are essential mediators of the stress system and major players in the stress response, that regulate resting homeostasis (metabolism of carbohydrates, proteins and fats) and modulate the immune response.

Mineralocorticoids

A class of corticosteroids involved in the maintenance of the salt and water balance in the body.

Immune checkpoint inhibitors

Drugs typically used in oncology that stimulate antitumour immune response by blocking checkpoint proteins and promoting immune-mediated elimination of tumour cells.

21-Hydroxylase

An enzyme involved in the biosynthesis of cortisol and aldosterone.

Autoimmune polyglandular syndromes

Also known as polyglandular autoimmune syndromes or autoimmune polyendocrine syndromes. These syndromes comprise a heterogeneous group of rare immune-mediated endocrinopathies affecting more than one endocrine organ. Non-endocrine organs may also be involved.

Hypopituitarism

Dysfunction of the pituitary with impaired secretion or a lack of secretion of one or more pituitary hormones.

Macula densa cells

Specialized cells lining the wall of kidney tubules that detect changes in distal tubular fluid composition and transmit signals to the glomerular vascular elements.

Juxtaglomerular cells

Specialized cells in the kidney that synthesize, store and secrete the enzyme renin.

Salt-wasting syndrome

A more severe form of congenital adrenal hyperplasia characterized by insufficient production and action of aldosterone that lead to renal sodium loss and consequent sodium depletion of the body. If undiagnosed, dehydration, hypotension, failure to thrive, hyponatraemia and hyperkalaemia occur within days of birth.

Virilization

A condition in which a female develops masculine characteristics such as excess facial and body hair, acne, increased muscle mass and baldness. Virilization is caused by excess production of endogenous androgens from the adrenals or the ovaries or from exogenous androgen administration.

Precocious pseudopuberty

Partial pubertal development that results from premature appearance of secondary sexual characteristics in prepubertal boys and girls owing to excess production of sex steroids.

Leydig cells

Steroidogenic cells in the testes that produce testosterone upon stimulation by pituitary luteinizing hormone.

Spastic paraparesis

A group of rare hereditary disorders that cause gradual weakness with muscle spasms.

Corticotroph

Cells in the anterior pituitary that produce pro-opiomelanocortin, which undergoes cleavage to form adrenocorticotropic hormone (ACTH) in response to stimulation by hypothalamic corticotropin-releasing hormone.

Adrenarche

Maturation of the zona reticularis of the adrenal resulting in increased production of adrenal androgens.

ACTH 1–24 stimulation test

Also known as the Synacthen test or corticotropin-stimulation test. This test is commonly used for the assessment of adrenal cortisol production. Cortisol serum levels are measured before and 30–60 min after supraphysiological stimulation with synthetic 1–24 ACTH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahner, S., Ross, R.J., Arlt, W. et al. Adrenal insufficiency. Nat Rev Dis Primers 7, 19 (2021). https://doi.org/10.1038/s41572-021-00252-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-021-00252-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing