Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reduced Hall carrier density in the overdoped strange metal regime of cuprate superconductors

Abstract

Efforts to understand the microscopic origin of superconductivity in the cuprates are dependent on knowledge of the normal state. The Hall number in the low-temperature, high-field limit nH(0) has a particular importance because, within conventional transport theory, it is simply related to the number of charge carriers, so its evolution with doping gives crucial information about the nature of the charge transport. Here we report a study of the high-field Hall coefficient of the single-layer cuprates Tl2Ba2CuO6+δ (Tl2201) and (Pb/La)-doped Bi2Sr2CuO6+δ (Bi2201), which shows how nH(0) evolves in the overdoped—so-called strange metal—regime of cuprates. We find that nH(0) increases smoothly from p to 1 + p, where p is the number of holes doped into the parent insulating state, over a wide range of doping. The evolution of nH correlates with the emergence of the anomalous linear-in-temperature term in the low-temperature in-plane resistivity. The results could suggest that quasiparticle decoherence extends to dopings well beyond the pseudogap regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Field dependence of the Hall coefficient for Tl2201.
Fig. 2: Evolution of the Hall number with temperature and doping for Tl2201 and Bi2201.
Fig. 3: Doping dependence of the low-temperature Hall number and linear-in-T component of resistivity for Tl2201 and Bi2201.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article  ADS  Google Scholar 

  2. LeBoeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature 450, 533–536 (2007).

    Article  ADS  Google Scholar 

  3. Sebastian, S. E., Harrison, N. & Lonzarich, G. G. Towards resolution of the Fermi surface in underdoped high-Tc superconductors. Rep. Prog. Phys. 75, 102501 (2012).

    Article  ADS  Google Scholar 

  4. Vignolle, B. et al. Quantum oscillations in an overdoped high-Tc superconductor. Nature 455, 952–955 (2008).

    Article  ADS  Google Scholar 

  5. Bangura, A. F. et al. Fermi surface and electronic homogeneity of the overdoped cuprate superconductor Tl2Ba2CuO6 + δ as revealed by quantum oscillations. Phys. Rev. B 82, 140501 (2010).

    Article  ADS  Google Scholar 

  6. Rourke, P. M. C. et al. A detailed de Haas-van Alphen effect study of the overdoped cuprate Tl2Ba2CuO6 + δ. New J. Phys. 12, 105009 (2010).

    Article  ADS  Google Scholar 

  7. Hussey, N. E., Abdel-Jawad, M., Carrington, A., Mackenzie, A. P. & Balicas, L. A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor. Nature 425, 814–817 (2003).

    Article  ADS  Google Scholar 

  8. Plate, M. et al. Fermi surface and quasiparticle excitations ofoverdoped Tl2Ba2CuO6 + δ. Phys. Rev. Lett. 95, 077001 (2005).

    Article  ADS  Google Scholar 

  9. Kubo, Y., Shimakawa, Y., Manako, T. & Igarashi, H. Transport and magnetic-properties of Tl2Ba2CuO6 + δ showing a delta-dependent gradual transitionfrom an 85-K superconductor to a nonsuperconducting metal. Phys. Rev. B 43, 7875–7882 (1991).

    Article  ADS  Google Scholar 

  10. Manako, T., Kubo, Y. & Shimakawa, Y. Transport and structural study of Tl2Ba2CuO6 + δ single-crystals prepared by the KCl flux method. Phys. Rev. B 46, 11019–11024 (1992).

    Article  ADS  Google Scholar 

  11. Hussey, N. E. Phenomenology of the normal state in-plane transport properties of high-Tc cuprates. J. Phys. Condens. Matter 20, 123201 (2008).

    Article  ADS  Google Scholar 

  12. Hussey, N. E., Gordon-Moys, H., Kokalj, J. & McKenzie, R. H. Generic strange-metal behaviour of overdoped cuprates. J. Phys. Conf. Ser. 449, 012004 (2013).

    Article  Google Scholar 

  13. Shibauchi, T., Carrington, A. & Matsuda, Y. A quantum critical point lying beneath the superconducting dome in iron pnictides. Annu. Rev. Condens. Matter Phys. 5, 113–135 (2014).

    Article  ADS  Google Scholar 

  14. Taillefer, L. Scattering and pairing in cuprate superconductors. Annu. Rev. Condens. Matter Phys. 1, 51–80 (2010).

    Article  ADS  Google Scholar 

  15. Blanco-Canosa, S. et al. Resonant X-ray scattering study of charge-density wavecorrelations in YBa2Cu3O6 +x. Phys. Rev. B 90, 054513 (2014).

    Article  ADS  Google Scholar 

  16. Tabis, W. et al. Synchrotron X-ray scattering study ofcharge-density-wave order in HgBa2CuO4 + δ. Phys. Rev. B 96, 134510 (2017).

    Article  ADS  Google Scholar 

  17. Cooper, J. R., Loram, J. W., Kokanovic, I., Storey, J. G. & Tallon, J. L. Pseudogap in YBa2Cu3O6 + δ is not bounded by a line of phase transitions: thermodynamic evidence. Phys. Rev. B 89, 201104 (2014).

    Article  ADS  Google Scholar 

  18. Ramshaw, B. J. et al. Quasiparticle mass enhancement approaching optimal doping in a high-Tc superconductor. Science 348, 317–320 (2015).

    Article  ADS  Google Scholar 

  19. Badoux, S. et al. Change of carrier density at the pseudogap critical point of a cuprate superconductor. Nature 531, 210–214 (2016).

    Article  ADS  Google Scholar 

  20. Putzke, C. et al. Inverse correlation between quasiparticle mass and Tc in a cuprate high-Tc superconductor. Sci. Adv. 2, e1501657 (2016).

    Article  ADS  Google Scholar 

  21. Ando, Y., Kurita, Y., Komiya, S., Ono, S. & Segawa, K. Evolution of the Hall coefficient and the peculiar electronic structure of the cuprate superconductors. Phys. Rev. Lett. 92, 197001 (2004).

    Article  ADS  Google Scholar 

  22. Balakirev, F. F. et al. Quantum phase transition in the magnetic-field-induced normal state of optimum-doped high-Tc cuprate superconductors at low temperatures. Phys. Rev. Lett. 102, 017004 (2009).

    Article  ADS  Google Scholar 

  23. Horio, M. et al. Three-dimensional Fermi surface of overdoped La-based cuprates. Phys. Rev. Lett. 121, 077004 (2018).

    Article  ADS  Google Scholar 

  24. Collignon, C. et al. Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor La1.6 − xNd0.4SrxCuO4. Phys. Rev. B 95, 224517 (2017).

    Article  ADS  Google Scholar 

  25. Matt, C. E. et al. Electron scattering, charge order, and pseudogap physics in La1.6 − xNd0.4SrxCuO4: an angle-resolved photoemission spectroscopy study. Phys. Rev. B 92, 134524 (2015).

    Article  ADS  Google Scholar 

  26. Ding, Y. et al. Disappearance of superconductivity and a concomitant Lifshitz transition in heavily overdoped Bi2Sr2CuO6 superconductor revealed by angle-resolved photoemission spectroscopy. Chin. Phys. Lett. 36, 017402 (2019).

    Article  ADS  Google Scholar 

  27. Abdel-Jawad, M. et al. Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor. Nat. Phys. 2, 821–825 (2006).

    Article  Google Scholar 

  28. Abdel-Jawad, M. et al. Correlation between the superconducting transitiontemperature and anisotropic quasiparticle scattering in Tl2Ba2CuO6 + δ.Phys. Rev. Lett. 99, 107002 (2007).

    Article  ADS  Google Scholar 

  29. Kondo, T., Takeuchi, T., Kaminski, A., Tsuda, Y. & Shin, S. Evidence for two energy scales in the superconducting state of optimally doped (Bi,Pb)2(Sr,La)2CuO6 + δ. Phys. Rev. Lett. 98, 267004 (2007).

    Article  ADS  Google Scholar 

  30. Wise, W. D. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nat. Phys. 4, 696–699 (2008).

    Article  Google Scholar 

  31. Wise, W. D. et al. Imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor. Nat. Phys. 5, 213–216 (2009).

    Article  Google Scholar 

  32. Kondo, T., Khasanov, R., Takeuchi, T., Schmalian, J. & Kaminski, A. Competition between the pseudogap and superconductivity in the high-Tc copper oxides. Nature 457, 296–300 (2009).

    Article  ADS  Google Scholar 

  33. French, M. M. J., Analytis, J. G., Carrington, A., Balicas, L. & Hussey, N. E. Tracking anisotropic scattering in overdoped Tl2Ba2CuO6 + δ above 100 K. New J. Phys. 11, 055057 (2009).

    Article  ADS  Google Scholar 

  34. Balakirev, F. et al. Signature of optimal doping in Hall-effect measurements on a high-temperature superconductor. Nature 424, 912–915 (2003).

    Article  ADS  Google Scholar 

  35. Pelc, D., Popčević, P., Požek, M., Greven, M. & Barišić, N. Unusual behavior of cuprates explained by heterogeneous charge localization. Sci. Adv. 5, eaau4538 (2019).

    Article  ADS  Google Scholar 

  36. Tallon, J. M. & Loram, J. W. The doping dependence of T*—what is the real high-Tc phase diagram. Physica C 349, 53–68 (2001).

    Article  ADS  Google Scholar 

  37. Wade, J. M., Loram, J. W., Mirza, K. A., Cooper, J. R. & Tallon, J. L. Electronic specific-heat of Tl2Ba2CuO6 + δ from 2 K to 300 K for 0 ≥ δ ≥ 0.1. J. Supercond. 7, 261–264 (1994).

    Article  ADS  Google Scholar 

  38. Fujiwara, K. et al. 63Cu knight shift study in high-Tc superconductor Tl2Ba2CuO6 + y with a single CuO2 layer. J. Phys. Soc. Jpn 59, 3459–3462 (1990).

    Article  ADS  Google Scholar 

  39. Kambe, S., Yasuoka, H., Hayashi, A. & Ueda, Y. NMR study of the spin dynamics in Tl2Ba2CuOy (Tc = 85 K). Phys. Rev. B 47, 2825–2834 (1993).

    Article  ADS  Google Scholar 

  40. Kawasaki, S., Lin, C. T., Kuhns, P. L., Reyes, A. P. & Zheng, G.-Q. Carrier-concentration dependence of the pseudogap ground state of superconducting Bi2Sr2 − xLaxCuO6 + δ revealed by 63,65Cu-nuclear magnetic resonance in very high magnetic fields. Phys. Rev. Lett. 105, 137002 (2010).

    Article  ADS  Google Scholar 

  41. Kondo, T. et al. Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates. Nat. Phys. 7, 21–25 (2011).

    Article  Google Scholar 

  42. Tallon, J. M., Storey, J. G., Cooper, J. R. & Loram, J. W. Locating the pseudogap closing point in cuprate superconductors: absence of entrant or reentrant behavior. Phys. Rev. B 101, 174512 (2020).

    Article  ADS  Google Scholar 

  43. Uemura, Y. et al. Magnetic-field penetration depth in Tl2Ba2CuO6 + δ in the overdoped regime. Nature 364, 605–607 (1993).

    Article  ADS  Google Scholar 

  44. Broun, D. M. et al. In-plane microwave conductivity of the single-layer cuprate Tl2Ba2CuO6 + δ. Phys. Rev. B 56, R11443–R11446 (1997).

    Article  ADS  Google Scholar 

  45. Abrahams, E. & Varma, C. M. Hall effect in the marginal Fermi liquid regime of high-Tc superconductors. Phys. Rev. B 68, 094502 (2003).

    Article  ADS  Google Scholar 

  46. Eberlein, A., Metzner, W., Sachdev, S. & Yamase, H. Fermi surface reconstruction and drop in the Hall number due to spiral antiferromagnetism in high-Tc cuprates. Phys. Rev. Lett. 117, 187001 (2016).

    Article  ADS  Google Scholar 

  47. Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2 − xSrxCuO4. Science 323, 603–607 (2009).

    Article  ADS  Google Scholar 

  48. Legros, A. et al. Universal T-linear resistivity and Planckian dissipation in overdoped cuprates. Nat. Phys. 15, 142–147 (2019).

    Article  Google Scholar 

  49. Barišić, N. et al. Evidence for a universal Fermi-liquid scattering rate throughout the phase diagram of the copper-oxide superconductors. New J. Phys. 21, 113007 (2019).

    Article  ADS  Google Scholar 

  50. Mackenzie, A. P., Julian, S. R., Sinclair, D. C. & Lin, C. T. Normal-state magnetotransport in superconducting Tl2Ba2CuO6 + δ to millikelvin temperatures. Phys. Rev. B 53, 5848–5855 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Arnold and P. Rourke for their contributions to the Bi2201 measurements and J. Tallon for useful discussions. This work was supported by Engineering and Physical Sciences Research Council grants EP/R011141/1, EP/K016709/1 and EP/L015544/1, the Netherlands Organisation for Scientific Research (NWO) grant 16METL01 ‘Strange Metals’ and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 835279-Catch-22). W.T. acknowledges support from the Polish National Agency for Academic Exchange under the ‘Polish Returns 2019’ programme, grant PPN/PPO/2019/1/00014/U/0001. We also acknowledge support from HFML-RU/FOM, HLD-HZDR and LNCMI-CNRS, members of the European Magnetic Field Laboratory (EMFL).

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by A.C., C.P. and N.E.H. Pulsed field measurements on Tl2201 were performed by C.P. and Z.W. at HLD–Dresden and by C.P., S.B., W.T. and J.A. at LNCMI–Toulouse. J.L. and S.L. contributed to the Hall effect measurement on Bi2201 at HMFL–Nijmegen. Samples of Tl2201 were grown by L.M. and J.R.C. Samples of Bi2201 were grown by T.K. and T.T. A.C. performed the numerical simulations of RH(T, H). The manuscript was written by A.C. and N.E.H., with input from all the co-authors.

Corresponding authors

Correspondence to Carsten Putzke, Nigel E. Hussey or Antony Carrington.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Methods including Supplementary Table 1 and Figs. 1–6, description of simulation including Figs. 7 and 8 and comparison to other compounds including Figs. 9 and 10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putzke, C., Benhabib, S., Tabis, W. et al. Reduced Hall carrier density in the overdoped strange metal regime of cuprate superconductors. Nat. Phys. 17, 826–831 (2021). https://doi.org/10.1038/s41567-021-01197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01197-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing