Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Infrared spectropolarimetric detection of intrinsic polarization from a core-collapse supernova

Abstract

Massive stars die an explosive death as a core-collapse supernova (CCSN). The exact physical processes that cause the collapsing star to rebound into an explosion are not well understood1,2,3, and the key to resolving this issue may lie in the measurement of the shape of CCSNe ejecta. Spectropolarimetry is the only way to perform this measurement for CCSNe outside the Milky Way and Magellanic Clouds. We present the infrared spectropolarimetric detection of a CCSN enabled by the new highly sensitive WIRC+Pol instrument at Palomar Observatory, which can observe CCSNe (magnitude M = −17 mag) out to 20 Mpc at ~0.1% polarimetric precision. Infrared spectropolarimetry is less affected than optical spectropolarimetry by dust scattering in the circumstellar and interstellar media, thereby providing a less biased probe of the intrinsic geometry of the supernova ejecta. SN 2018hna, a SN 1987A-like explosion, shows 2.0 ± 0.3% continuum polarization in the J band oriented at ~160° on sky 182 days after the explosion. Assuming a prolate geometry as in SN 1987A, we infer an ejecta axis ratio of <0.48 with the axis of symmetry pointing at a 70° position angle. The axis ratio is similar to that of SN 1987A, suggesting that the two CCSNe may share intrinsic geometry and inclination angles. Our data do not rule out oblate ejecta. We also observe one other CCSN and two thermonuclear supernovae in the J band. Supernova 2020oi, a stripped-envelope type Ic SN in Messier 100 has broadband p = 0.37 ± 0.09% at peak light, indicative of either a 10% asymmetry or host interstellar polarization. The type Ia SNe 2019ein and 2020ue have <0.33% and <1.08% polarization near peak light, indicative of asymmetries of less than 10% and 20%, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: J-band IR spectropolarimetry of SN 2018hna (87A-like).
Fig. 2: J-band IR spectropolarimetry of three SNe.
Fig. 3: Spectropolarimetry of different types of SN at different phases.
Fig. 4: SN 2018hna and SN 1987A ejecta geometries.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The WIRC+Pol data reduction pipeline can be publicly accessed at https://github.com/WIRC-Pol/wirc_drp. The specific scripts used to reproduce the results of this study are available from the corresponding author upon reasonable request.

References

  1. Smartt, S. J. Progenitors of core-collapse supernovae. Annu. Rev. Astron. Astrophys. 47, 63–106 (2009).

    Article  ADS  Google Scholar 

  2. Langer, N. Presupernova evolution of massive single and binary stars. Annu. Rev. Astron. Astrophys. 50, 107–164 (2012).

    Article  ADS  Google Scholar 

  3. Woosley, S. E. & Heger, A. The remarkable deaths of 9-11 solar mass stars. Astrophys. J. 810, 34 (2015).

    Article  ADS  Google Scholar 

  4. Janka, H.-T. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012).

    Article  ADS  Google Scholar 

  5. Burrows, A., Radice, D. & Vartanyan, D. Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M stars. Mon. Not. R. Astron. Soc. 485, 3153–3168 (2019).

    Article  ADS  Google Scholar 

  6. Maoz, D., Mannucci, F. & Nelemans, G. Observational clues to the progenitors of type Ia supernovae. Annu. Rev. Astron. Astrophys. 52, 107–170 (2014).

    Article  ADS  Google Scholar 

  7. Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  8. Perlmutter, S. et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    Article  ADS  MATH  Google Scholar 

  9. Cikota, A. et al. Linear spectropolarimetry of 35 Type Ia supernovae with VLT/FORS: an analysis of the Si II line polarization. Mon. Not. R. Astron. Soc. 490, 578–599 (2019).

    Article  ADS  Google Scholar 

  10. Yang, Y. et al. The young and nearby normal type Ia Supernova 2018gv: UV-optical observations and the earliest spectropolarimetry. Astrophys. J. 902, 46 (2020).

    Article  ADS  Google Scholar 

  11. Wang, L. & Wheeler, J. C. Spectropolarimetry of supernovae. Annu. Rev. Astron. Astrophys. 46, 433–474 (2008).

    Article  ADS  Google Scholar 

  12. Nagao, T., Maeda, K. & Tanaka, M. Circumstellar light echo as a possible origin of the polarization of type IIP supernovae. Astrophys. J. 847, 111 (2017).

    Article  ADS  Google Scholar 

  13. Nagao, T., Maeda, K. & Tanaka, M. Multi-band polarization of type IIP supernovae due to light echo from circumstellar dust. Astrophys. J. 861, 1 (2018).

    Article  ADS  Google Scholar 

  14. Voshchinnikov, N. V. Interstellar extinction and interstellar polarization: old and new models. J. Quant. Spectrosc. Radiat. Transf. 113, 2334–2350 (2012).

    Article  ADS  Google Scholar 

  15. Whittet, D. C. B. et al. Systematic variations in the wavelength dependence of interstellar linear polarization. Astrophys. J. 386, 562 (1992).

    Article  ADS  Google Scholar 

  16. Pinto, P. A. & Eastman, R. G. The physics of type IA supernova light curves. II. Opacity and diffusion. Astrophys. J. 530, 757–776 (2000).

    Article  ADS  Google Scholar 

  17. Escuti, M. J., Oh, C., Sánchez, C., Bastiaansen, C. & Broer, D. J. Simplified spectropolarimetry using reactive mesogen polarization gratings. Proc. SPIE 6302, 630207 (2006).

  18. Millar-Blanchaer, M., Moon, D.-S., Graham, J. R. & Escuti, M. Polarization gratings for visible and near-infrared astronomy. Proc. SPIE 9151, 91514I (2014).

  19. Manchado, A. et al. First light for LIRIS (long-slit intermediate-resolution infrared spectrograph). Proc. SPIE 5492, 1094–1104 (2004).

  20. Watanabe, M. et al. Near-infrared adaptive optics imaging- and spectro-polarimetry with the infrared camera and spectrograph of the Subaru Telescope. Proc. SPIE 10702, 107023V (2018).

  21. Tinyanont, S. et al. WIRC+Pol: a low-resolution near-infrared spectropolarimeter. Publ. Astron. Soc. Pac. 131, 025001 (2019).

    Article  ADS  Google Scholar 

  22. Tinyanont, S. et al. Achieving a spectropolarimetric precision better than 0.1% in the near-infrared with WIRC+Pol. Proc. SPIE 11132, 1113209 (2019).

  23. Singh, A. et al. SN 2018hna: 1987A-like supernova with a signature of shock Breakout. Astrophys. J. Lett. 882, L15 (2019).

    Article  ADS  Google Scholar 

  24. Dessart, L. & Hillier, D. J. Synthetic line and continuum linear-polarization signatures of axisymmetric type II supernova ejecta. Mon. Not. R. Astron. Soc. 415, 3497–3519 (2011).

    Article  ADS  Google Scholar 

  25. Hoflich, P. Asphericity effects in scatterring dominated photospheres. Astron. Astrophys. 246, 481–489 (1991).

    ADS  Google Scholar 

  26. Jeffery, D. J. Catalog of SN 1987A polarimetry corrected for interstellar polarization. Astrophys. J. Suppl. 77, 405–415 (1991).

    Article  ADS  Google Scholar 

  27. Wang, L. et al. The axisymmetric ejecta of supernova 1987A. Astrophys. J. 579, 671–677 (2002).

    Article  ADS  Google Scholar 

  28. Morris, T. & Podsiadlowski, P. The triple-ring nebula around SN 1987A: fingerprint of a binary merger. Science 315, 1103–1106 (2007).

    Article  ADS  Google Scholar 

  29. Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    Article  ADS  Google Scholar 

  30. De, K. et al. Palomar Gattini-IR: survey overview, data processing system, on-sky performance and first results. Publ. Astron. Soc. Pac. 132, 025001 (2020).

    Article  ADS  Google Scholar 

  31. Itagaki, K. Transient discovery report for 2018-10-22. Transient Name Server Discovery Report 2018-1614 (2018).

  32. Leadbeater, R. Transient classification report for 2018-10-26. Transient Name Server Classification Report 2018-1638 (2018).

  33. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  34. Dessart, L. & Hillier, D. J. Supernovae from blue supergiant progenitors: what a mess! Astron. Astrophys. 622, A70 (2019).

    Article  ADS  Google Scholar 

  35. Allen, D. A. et al. Supernova 1987A in the Large Magellanic Cloud. International Astronomical Union Circular 4351 (1987).

  36. West, R. M. et al. Supernova 1987A in the Large Magellanic Cloud. International Astronomical Union Circular 4319 (1987).

  37. Bailey, J. Spectropolarimetry of SN 1987A with the AAT. Proc. Astron. Soc. Aust. 7, 405–411 (1988).

    Article  ADS  Google Scholar 

  38. Tonry, J. et al. ATLAS Transient discovery report for 2019-05-01. Transient Name Server Discovery Report 2019-678 (2019).

  39. Burke, J., Arcavi, I., Howell, D. A., Hiramatsu, D. & McCully, C. Classification of AT 2019ein as a young SN Ia-peculiar. Transient Name Server AstroNote 8 (2019).

  40. Pellegrino, C. et al. Constraining the source of the high-velocity ejecta in type Ia SN 2019ein. Astrophys. J. 897, 159 (2020).

    Article  ADS  Google Scholar 

  41. Forster, F. et al. ALeRCE/ZTF transient discovery report for 2020-01-07. Transient Name Server Discovery Report 2020-67 (2020).

  42. Siebert, M. R., Kilpatrick, C. D., Foley, R. J. & Cartier, R. UCSC transient classification report for 2020-01-09. Transient Name Server Classification Report 2020-90 (2020).

  43. Horesh, A. et al. A non-equipartition shock wave traveling in a dense circumstellar environment around SN 2020oi. Astrophys. J. 903, 132 (2020).

    Article  ADS  Google Scholar 

  44. Kawabata, M. Transient classification report for 2020-01-12. Transient Name Server Classification Report 2020-114 (2020).

  45. Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pac. 98, 609–617 (1986).

    Article  ADS  Google Scholar 

  46. Wardle, J. F. C. & Kronberg, P. P. The linear polarization of quasi-stellar radio sources at 3.71 and 11.1 centimeters. Astrophys. J. 194, 249–255 (1974).

    Article  ADS  Google Scholar 

  47. Jensen-Clem, R. et al. Point source polarimetry with the Gemini Planet Imager: sensitivity characterization with T5.5 dwarf companion HD 19467 B. Astrophys. J. 820, 111 (2016).

    Article  ADS  Google Scholar 

  48. Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).

    Article  ADS  Google Scholar 

  49. Cushing, M. C., Vacca, W. D. & Rayner, J. T. Spextool: a spectral extraction package for SpeX, a 0.8-5.5 micron cross-dispersed spectrograph. Publ. Astron. Soc. Pac. 116, 362–376 (2004).

    Article  ADS  Google Scholar 

  50. Vacca, W. D., Cushing, M. C. & Rayner, J. T. A method of correcting near-infrared spectra for telluric absorption. Publ. Astron. Soc. Pac. 115, 389–409 (2003).

    Article  ADS  Google Scholar 

  51. Oke, J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pac. 107, 375–385 (1995).

    Article  ADS  Google Scholar 

  52. Leonard, D. C., Li, W., Filippenko, A. V., Foley, R. J. & Chornock, R. Evidence for spectropolarimetric diversity in type Ia supernovae. Astrophys. J. 632, 450–475 (2005).

    Article  ADS  Google Scholar 

  53. Wang, L. et al. Premaximum spectropolarimetry of the type Ia SN 2004dt. Astrophys. J. 653, 490–502 (2006).

    Article  ADS  Google Scholar 

  54. Tanaka, M. et al. Spectropolarimetry of the unique type Ib supernova 2005bf: larger asymmetry revealed by later-phase data. Astrophys. J. 699, 1119–1124 (2009).

    Article  ADS  Google Scholar 

  55. Tanaka, M., Kawabata, K. S., Maeda, K., Hattori, T. & Nomoto, K. Optical spectropolarimetry and asphericity of the type Ic SN 2007gr. Astrophys. J. 689, 1191–1198 (2008).

    Article  ADS  Google Scholar 

  56. Tanaka, M. et al. Three-dimensional explosion geometry of stripped-envelope core-collapse supernovae. I. Spectropolarimetric observations. Astrophys. J. 754, 63 (2012).

    Article  ADS  Google Scholar 

  57. Panagia, N. New distance determination to the LMC. Mem. Soc. Astron. Ital. 69, 225–235 (1998).

    ADS  Google Scholar 

  58. The Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

Download references

Acknowledgements

We thank A. Cikota and J. Sollerman for reading the manuscript and providing helpful comments and suggestions. We thank L. Dessart for helpful discussions, and for providing us with a model of optical depth in SN 1987A-like explosions. We thank the following for providing machine-readable data for the SNe listed: A. Cikota for SN 2005df; T. Nagao for SN 2017gmr; and M. Tanaka for SNe 2005bf, 2007gr and 2009mi. The data presented herein were obtained at Palomar Observatory, which is operated by a collaboration between the California Institute of Technology, the Jet Propulsion Laboratory, Yale University and the National Astronomical Observatories of China. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research made use of Astropy, a community-developed core Python package for Astronomy58. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Figure 4c is based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

Author information

Authors and Affiliations

Authors

Contributions

S.T., M.M.-B., D.M., N.J., G.V. and E.S. were responsible for the design, construction and commissioning of the WIRC+Pol instrument, which enabled this study. S.T., M.M.K. and D.M. designed the experiment. S.T. and M.M.-B. obtained and analysed the data. S.T., D.C.L. and M.B. interpreted the results. M.M.K., K.D. and M.H. designed and built the Gattini-IR telescope and were responsible for providing photometric data for the analysis. S.T. and M.M.-B. prepared the manuscript with input and review from all authors.

Corresponding author

Correspondence to Samaporn Tinyanont.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Astronomy thanks Grant Williams and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinyanont, S., Millar-Blanchaer, M., Kasliwal, M.M. et al. Infrared spectropolarimetric detection of intrinsic polarization from a core-collapse supernova. Nat Astron 5, 544–551 (2021). https://doi.org/10.1038/s41550-021-01320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01320-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing