Skip to main content
Log in

Electrodeposition of Silver–Graphene Films for Electronic Connectors in Succinimide Solutions

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Silver is electroplated on the surface of connectors as a protective barrier layer in order to improve the corrosion resistance and to increase the durability of the connector. In this work, silver-graphene films were electrodeposited on copper–zinc alloy substrates from a succinimide silver-plating system in Hull-cell alkaline solutions by the addition of 0.4 g L–1 graphene oxide. The crystallographic structure and microstructure of the formed films were determined by X-ray diffraction and scanning electron microscopy, respectively. The corrosion resistance of the films was measured by a potentiodynamic polarization test. The results show that a low amount of graphene was incorporated into a silver deposit. The addition of graphene oxide could not influence the deposition rate and the crystallographic structure of the film, but resulted in a decrease in the size of aggregates or particles, compared with those of a pure silver film. The optimal current density was found to be 0.5 ~ 1.0 A dm–2, the surface of the films had a homogeneous close-packed fine-crystalline structure. The films were uniform, dense, and adherent to the substrate, without any evidence of delamination. At the same time, the addition of graphene oxide improved the corrosion resistance of silver films to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Song, J. and Schinow, V., Correlation between friction and wear properties and electrical performance of silver coated electrical connectors, Wear, 2015, vols. 330–331, p. 400. https://doi.org/10.1016/j.wear.2015.02.026

    Article  Google Scholar 

  2. Pompanon, F., Fouvry, S., and Alquier, O., Influence of humidity on the endurance of silver-plated electrical contacts subjected to fretting wear, Surf. Coat. Technol., 2018, vol. 354, p. 246. https://doi.org/10.1016/j.surfcoat.2018.07.109

    Article  Google Scholar 

  3. Liang, R.Y., Xu, Y.L., Zhao, M., et al., Properties of silver contained coatings on CoCr alloys prepared by vacuum plasma spraying, Mater. Sci. Eng., C, 2020, vol. 106, p. 110156. https://doi.org/10.1016/j.msec.2019.110156

    Article  Google Scholar 

  4. Safonov, V., Donkov, N., Zykova, A., et al., The antimicrobial activity of magnetron sputtered ag doped aluminum oxide coatings in vitro, Probl. At. Sci. Technol., 2019, vol. 119, p. 187.

    Google Scholar 

  5. Oh, C., Nagao, S., and Suganuma, K., Pressureless bonding using sputtered Ag thin films, J. Electron. Mater., 2014, vol. 43, p. 4406. https://doi.org/10.1007/s11664-014-3355-3

    Article  Google Scholar 

  6. Perrenot, P., Pairis, S., Bourgault, D., and Caillault, N., Sulphur corrosion effect on the electrical performance of silver films elaborated by physical vapor deposition, Vacuum, 2019, vol. 163, p. 26. https://doi.org/10.1016/j.vacuum.2019.01.024

    Article  Google Scholar 

  7. Durmanov, N.N., Guliev, R.R., Eremenko, A.V., et al., Non-labeled selective virus detection with novel SERS-active porous silver nanofilms fabricated by electron beam physical vapor deposition, Sens. Actuators, B, 2018, vol. 257, p. 37. https://doi.org/10.1016/j.snb.2017.10.022

    Article  Google Scholar 

  8. Kubota, A. and Koura, N., Studies on the electroless plating silver, J. Met. Finish. Soc. Jpn., 1986, vol. 37, p. 131. https://doi.org/10.4139/sfj1950.37.131

    Article  Google Scholar 

  9. Chang, C., Lei, Z.W., Li, Y.H., and Wang, Z.L., Electrochemical research of a stable electroless silver bath, J. Electrochem. Soc., 2016, vol. 163, p. D121. https://doi.org/10.1149/2.1101603jes

    Article  Google Scholar 

  10. Wu, W.P., Liu, J.W., Zhang, Y., et al., The influence of current density and bath temperature on electrodeposition of rhodium film from sulfate-phosphate aqueous solutions, J. Appl. Electrochem., 2019, vol. 49, p. 1043. https://doi.org/10.1007/s10800-019-01348-5

    Article  Google Scholar 

  11. Wu, W.P., Jiang, J.J., Jiang, P., et al., Electrodeposition of nickel–iridium alloy films from aqueous solutions, Appl. Surf. Sci., 2018, vol. 434, p. 307. https://doi.org/10.1016/j.apsusc.2017.10.180

    Article  Google Scholar 

  12. Wu, W.P., Wang, Z.Z., Jiang, P., and Tang, Z.P., Effect of electroplating variables on electrodeposition of Ni rich Ni-Ir alloys from citrate aqueous solutions, J. Electrochem. Soc., 2017, vol. 164, p. D985. .https://doi.org/10.1149/2.0771714jes

    Article  Google Scholar 

  13. Wu, W.P., Effect of gelatin additive on microstructure and composition of electrodeposited rhenium–nickel alloys in aqueous solutions, Appl. Phys. A: Mater. Sci. Process., 2016, vol. 122, p. 1028. https://doi.org/10.1007/s00339-016-0567-9

    Article  Google Scholar 

  14. Wu, W.P., Electrodeposition and thermal stability of Re60Ni40 amorphous alloy, Electrochemistry, 2016, vol. 84, p. 699. https://doi.org/10.5796/electrochemistry.84.699

    Article  Google Scholar 

  15. Wu, W.P., Liu, J.W., Johannes, N., et al., Galvanostatic electrodeposition of thin-film Ir–Ni electrocatalyst on copper foam for HER performance in alkaline electrolyte, Catal. Lett., 2020, vol. 150, p. 1325. https://doi.org/10.1007/s10562-019-03038-5

    Article  Google Scholar 

  16. Wu, W.P. and Jiang, J.J., Effect of plating temperature on electroless amorphous Ni–P film on Si wafers in an alkaline bath solution, Appl Nanosci., 2017, vol. 7, p. 325. https://doi.org/10.1007/s13204-017-0575-x

    Article  Google Scholar 

  17. Miao, N.M., Jiang, J.J., and Wu, W.P., Influences of bath chemistry and plating variables on characteristics of electroless Ni-P films on Si wafers from alkaline citrate solutions, J. Nanomater., vol 2018, art. ID 1817542. https://doi.org/10.1155/2018/1817542

  18. Wu, W.P., Liu, J.W., Miao, N.M., et al., Influence of thiourea on electroless Ni–P films on silicon substrates, J. Mater. Sci.: Mater. Electron., 2019, vol. 30, p. 7717. https://doi.org/10.1007/s10854-019-01088-4

    Article  Google Scholar 

  19. Wu, W.P., Wang, X., Xie, D.K., Zhang, Y., et al., Corrosion failure analysis of Ni–P film of aircraft fire detector components, Eng. Failure Anal., 2020, vol. 111, p. 104497. https://doi.org/10.1016/j.engfailanal.2020.104497

    Article  Google Scholar 

  20. Sobha, J., Natarajan, S.R., and Vasu, K.I., Alkaline noncyanide bath for electrodeposition of silver, Met. Finish., 1996, vol. 94, p. 12. https://doi.org/10.1016/S0026-0576(96)80003-1

    Article  Google Scholar 

  21. Hideo, H. and Inoue, H., Mirror-bright silver plating from a cyanide-free bath, Met. Finish., 1998, vol. 96, p. 18. https://doi.org/10.1016/S0026-0576(97)80215-2

    Article  Google Scholar 

  22. Ren, F.Z., Yin, L.T., Wang, S.S., et al., Cyanide-free silver electroplating process in thiosulfate bath and microstructure analysis of Ag coatings, Trans. Nonferrous Met. Soc., 2013, vol. 23, p. 3822. https://doi.org/10.1016/S1003-6326(13)62935-0

    Article  Google Scholar 

  23. Krishnan, R.M., Sriveeraraghavan, S., and Natarajan, S.R., Thiosulphate baths for silver plating, Bull. Electrochem., 1986, vol. 2, no. 3, p. 257.

    Google Scholar 

  24. Inoue, H., Yamakawa, K., and Masaki, S., Mechanisms of silver electrodeposition from potassium iodide bath, J. Surf. Finish. Soc. Jpn., 1993, vol. 44, p. 55. https://doi.org/10.4139/sfj.44.55

    Article  Google Scholar 

  25. Kondo, T., Masaki, S., Inoue, H., et al., Silver plating from silver methane sulfonate-potassium iodide baths, J. Surf. Finish. Soc. Jpn., 1991, vol. 42, p. 241. https://doi.org/10.4139/sfj.42.241

    Article  Google Scholar 

  26. Azzaroni, O., Schilardi, P., Salvarezza, R., and Arvia, A., Smoothening mechanism of thiourea on silver electrodeposition. Real time imaging of the growth front evolution, Langmuir, 1999, vol. 15, no. 4, p. 1508. https://doi.org/10.1021/la9806092

    Article  Google Scholar 

  27. Zarkadas, G.M., Stergiou, A., and Papanastasiou, G., Influence of citric acid on the silver electrodeposition from aqueous AgNO3 solutions, Electrochim. Acta, 2005, vol. 50, p. 5022. https://doi.org/10.1016/j.electacta.2005.02.081

    Article  Google Scholar 

  28. Oliveira, G., Barbosa, L., Broggi, R., and Carlos, I., Voltammetric study of the influence of EDTA on the silver electrodeposition and morphological and structural characterization of silver films, J. Electroanal. Chem., 2005, vol. 578, p. 151. https://doi.org/10.1016/j.jelechem.2004.12.033

    Article  Google Scholar 

  29. Shacham-Diamand, Y., Inberg, A., Sverdlov, Y., and Croitoru, N., Electroless silver and silver with tungsten thin films for microelectronics and microelectromechanical system applications, J. Electrochem. Soc., 2000, vol. 147, p. 3345. https://doi.org/10.1149/1.1393904

    Article  Google Scholar 

  30. Abbott, A., El Ttaib, K., Frisch, G., et al., The electrodeposition of silver composites using deep eutectic solvents, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 2443. https://doi.org/10.1039/c2cp23712a

    Article  Google Scholar 

  31. Wu, W.P., Liu, J.W., Li, X.Y., et al., Incorporation graphene into sprayed epoxy-polyamide coating on carbon steel: Corrosion resistance properties, Corros. Eng. Sci. Technol., 2018, vol. 53, p. 625. https://doi.org/10.1080/1478422X.2018.1521590

    Article  Google Scholar 

  32. Kim, J.T., Choi, H., Shin, E., et al., Graphene-based optical waveguide tactile sensor for dynamic response, Sci. Rep., 2018, vol. 8, p. 16118. https://doi.org/10.1038/s41598-018-34613-2

    Article  Google Scholar 

  33. Akbar, K., Kim, J.H., Lee, Z., et al., Superaerophobic graphene nano-hills for direct hydrazine fuel cells, NPG Asia Mater., 2017, vol. 9, p. e378. https://doi.org/10.1038/am.2017.55

    Article  Google Scholar 

  34. Goldsmith, B., Locascio, L., Gao, Y.N., et al., Digital biosensing by foundry-fabricated graphene sensors, Sci. Rep., 2018, vol. 9, p. 1. https://doi.org/10.1038/s41598-018-34613-2

    Article  Google Scholar 

  35. Liu, C., Su, F., and Liang, J., Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance, Appl. Surf. Sci., 2015, vol. 351, p. 889. https://doi.org/10.1016/j.apsusc.2015.06.018

    Article  Google Scholar 

  36. He, J.L. and Fang, L., Controllable synthesis of reduced graphene oxide, Curr. Appl. Phys., 2016, vol. 16, p. 1152. https://doi.org/16.10.1016/j.cap.2016.06.011

    Article  MathSciNet  Google Scholar 

  37. Fan, X.B., Peng, W.C., Li, Y., et al., Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation, Adv. Mater., 2008, vol. 20, p. 4490. https://doi.org/10.1002/adma.200801306

    Article  Google Scholar 

  38. Kuang, D., Xu, L.Y., Liu, L., et al., Graphene–nickel composites, Appl. Surf. Sci., 2013, vol. 273, p. 484. https://doi.org/10.1016/j.apsusc.2013.02.066

    Article  Google Scholar 

  39. Zhang, H.G., Zhang, N., and Fang, F.Z., Fabrication of high-performance nickel/graphene oxide composite coatings using ultrasonic-assisted electrodeposition, Ultrason. Sonochem., 2019, vol. 62, p. 104858. https://doi.org/10.1016/j.ultsonch.2019.104858

    Article  Google Scholar 

  40. Chen, J.J., Li, J.L., Xiong, D., et al., Preparation and tribological behavior of Ni–graphene composite coating under room temperature, Appl. Surf. Sci., 2015, vol. 361, p. 49. https://doi.org/10.1016/j.apsusc.2015.11.094

    Article  Google Scholar 

  41. Xue, Z.M., Lei, W.N. Wang, Y.Q., et al., Effect of pulse duty cycle on mechanical properties and microstructure of nickel–graphene composite coating produced by pulse electrodeposition under supercritical carbon dioxide, Surf. Coat. Technol., 2017, vol. 325, p. 417. https://doi.org/10.1016/j.surfcoat.2017.07.017

    Article  Google Scholar 

  42. Maharana, H.S., Rai, P.K., and Basu, A., Surface-mechanical and electrical properties of pulse electrodeposited Cu–graphene oxide composite coating for electrical contacts, J. Mater. Sci., 2017, vol. 52, p. 1089. https://doi.org/10.1007/s10853-016-0405-7

    Article  Google Scholar 

  43. Song, G.S., Yang, Y.P., Fu, Q., et al., Preparation of Cu–Graphene composite thin foils via DC electro-deposition and its optimal conditions for highest properties, J. Electrochem. Soc., 2017, vol. 164, p. D652. https://doi.org/10.1149/2.0121712jes

    Article  Google Scholar 

  44. Song, G.S., Wang, Z.C., Gong, Y.N., et al., Direct determination of graphene amount in electrochemical deposited Cu-based composite foil and its enhanced mechanical property, RSC Adv., 2017, vol. 7, p. 1735. https://doi.org/10.1039/C6RA25512D

    Article  Google Scholar 

  45. Song, G.S., Sun, L., Li, S.S., Sun, Y.F., et al., Synergistic effect of Gr and CNTs on preparing ultrathin Cu–(CNTs + Gr) composite foil via electrodeposition, Composites, Part B, 2020, vol. 187, p. 107841. https://doi.org/10.1016/j.compositesb.2020.107841

    Article  Google Scholar 

  46. Jagannadham, K., Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets, Metall. Mater. Trans. B, 2012, vol. 43, p. 316. https://doi.org/10.1007/s11663-011-9597-z

    Article  Google Scholar 

  47. Yang, Y.P., Song, G.S., Fu, Q., and Pan, C.X., Preparation of Fe–Gr composite layer via DC electro-plating for high performances, J. Alloy Compd., 2018, vol. 768, p. 859. https://doi.org/10.1016/j.jallcom.2018.07.287

    Article  Google Scholar 

  48. Li, N., Zhang, L., Xu, M.T., et al., Preparation and mechanical property of electrodeposited Al–graphene composite coating, Mater. Des., 2016, vol. 111, p. 522. https://doi.org/10.1016/j.matdes.2016.09.035

    Article  Google Scholar 

  49. Li, S.S., Song, G.S., Fu, Q., and Pan, C.X., Preparation of Cu–graphene coating via electroless plating for high mechanical property and corrosive resistance, J. Alloy Compd., 2018, vol. 777, p. 877. https://doi.org/10.1016/j.jallcom.2018.11.031

    Article  Google Scholar 

  50. Zheng, D.Y., Hu, H., Liu, X.J., and Hu, S.S., Application of graphene in electrochemical sensing, Curr. Opin. Colloid Interface Sci., 2015, vol. 20, p. 383. https://doi.org/10.1016/j.cocis.2015.10.011

    Article  Google Scholar 

  51. Goki, E., Giovanni, F., and Manish, C., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol., 2008, vol. 3, p. 270. https://doi.org/10.1038/nnano.2008.83

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. Mengqi Cong from Jiangsu University of Technology for helping in the SEM/EDS characterization.

Funding

The authors express their gratitude to Zhenjiang Yinfeng Electroplating Technology Co., LTd and Zhenjiang Arf Special Coating Technology Co., Ltd for the support of this work. This work has also been partially supported by the Changzhou Sci and Tech Program (Grant no. CJ20190041) and the Funding of Changzhou High Technology Research Key Laboratory of Mould Advanced Manufacturing (Grant no. CM20173001) and the National Natural Science Foundation of China (Grant no. 51875053).

Author information

Authors and Affiliations

Authors

Contributions

Wangping Wu planned, wrote and supervised this work. Xiang Wang prepared the films by electrodeposition, co-wrote and edited this paper. Wangping Wu and Peng Jiang supervised master student Xiang Wang. Xiang Wang, Jianwen Liu and Dingkai Xie performed corrosion and optical micrograph tests. Junjun Huang, Peng Jiang, Ming Liu and Yi Zhang performed and analyzed characterization of graphene oxide. Lixin Tang and Yuefeng Chen conceived the rest of the experiments, and provided experimental platform and three months of internship experience for master students Xiang Wang and Dingkai Xie. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Wangping Wu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang Wang, Wu, W., Xie, D. et al. Electrodeposition of Silver–Graphene Films for Electronic Connectors in Succinimide Solutions. Surf. Engin. Appl.Electrochem. 57, 75–87 (2021). https://doi.org/10.3103/S1068375521010142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521010142

Keywords:

Navigation