Skip to main content
Log in

Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The bubbles of water jet cavitation and of multifunction cavitation (MFC) generated by nozzles with diameters of 0.1, 0.2 and 0.8 mm were investigated for the collapse pressure of microjets, the nozzle-specimen distance, the degree of processing, the photocatalyst characteristics for titanium oxide particles, and the multi-bubble sonoluminescence. The dependence of these characteristics on the nozzle diameter was clarified. The nozzle-specimen distance became shorter as the nozzle diameter decreased. The titanium oxide powder was processed with MFC using 0.8, 0.2 and 0.1 mm water jet nozzles. More hydrogen was generated with a nozzle diameter of 0.8 mm than with a 0.1 mm nozzle. A 0.2 mm nozzle generated less hydrogen than a 0.1 mm nozzle because the water jet pressure from a 0.2 mm nozzle was lower. A 0.1 mm nozzle produced the same luminous intensity from cavitation bubbles as a 0.8 mm nozzle. These results mean that the bubble temperature attained by 0.1 and 0.8 mm nozzles is relatively high. The smaller the nozzle diameter becomes, the smaller the bubble diameter and the lower the collapse pressure of the microjet, which leads to a lower degree of processing and reduced influence on photocatalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Engel, O.G., A Model for Multiple-Drop-Impact Erosion of Brittle Solid: NASA Contractor Report No. CR-1943, Washington, DC: Natl. Aeronaut. Space Admin., 1971, p. 1.

  2. Summers, D.A., Waterjetting Technology, London: E&FN Spon, 1995. ISBN 9780419196600

    Book  Google Scholar 

  3. Miller, R.K., Waterjet Cutting: Technology and Industrial Applications Paperback, Lilburn: Fairmont, 1991. ISBN-10: 0881730688, ISBN-13: 978-0881730685.

  4. Hashish, M., Characteristics of surfaces machined with abrasive-waterjets, J. Eng. Mater. Technol., 1991, vol. 113, p. 354.

    Article  Google Scholar 

  5. Hashish, M., A modeling study of metal cutting with abrasive waterjets, J. Eng. Mater. Technol., 1984, vol. 106, p. 88.

    Article  Google Scholar 

  6. Mayuet, P.F., Girot, F., Lamíkiz, A., Fernández-Vidal, S.R., et al., SOM/SEM based characterization of internal delaminations of CFRP samples machined by AWJM, Procedia Eng., 2015, vol. 132, p. 693.

    Article  Google Scholar 

  7. Saitou, N., Enomoto, K., Kurosawa, K., Morinaka, R., Hayashi, R., Ishikawa, T., and Yoshimura, T., Development of water jet peening technique for reactor internal components of nuclear power plant, J. Jet Flow Eng., 2003, vol. 20, no. 1, p. 4.

    Google Scholar 

  8. Ijiri, M., Shimonishi, D., Nakagawa, D., and Yoshimura, T., Evolution of microstructure from the surface to the interior of Cr–Mo steel by water jet peening, Mater. Sci. Appl., 2017, vol. 8, no. 10, p. 708.

    Google Scholar 

  9. Yoshimura, T., Tanaka, K., and Yoshinaga, N., Development of mechanical-electrochemical cavitation technology, J. Jet Flow Eng., 2016, vol. 32, no. 1, p. 10.

    Google Scholar 

  10. Yoshimura, T., Tanaka, K., and Yoshinaga, N., Material processing by mechanical-electrochemical cavitation, Proc. 23rd Int. Conf. on Water Jetting, Washington, 2016, p. 223.

  11. Yoshimura, T., Tanaka, K., and Yoshinaga, N., Nano-level material processing by multifunction cavitation, Nanosci. Nanotechnol. Asia, 2018, vol. 8, no. 1, p. 41.

    Article  Google Scholar 

  12. Yoshimura, T., Maeda, D., Ogi, T., Kato, F., and Ijiri, M., Sonoluminescence from ultra-high-temperature and high-pressure cavitation and its effect on surface modification of Cr-Mo steel, Global J. Technol. Optim., 2020, vol. 11, no. 2. https://doi.org/10.4172/gjto.2020.11.240

  13. Kling, C.L., A High Speed Photographic Study of Cavitation Bubble Collapse: Cavitation and Multiphase Flow Laboratory Report No. 03371-2-T, Ann Arbor, MI: Univ. Michigan, 1970.

  14. Summers, D.A., et al., Consideration in the design of a waterjet device for reclamation of missile casings, Proc. Fourth U.S. Water Jet Conf., Berkeley: Univ. Calif., 1987. p. 82.

  15. Yoshimura, T., Tanaka, K., and Ijiri, M., Nanolevel surface processing of fine particles by waterjet cavitation and multifunction cavitation to improve the photocatalytic properties of titanium oxide, in Cavitation—Selected Issues, London: InTech Open, 2018. https://doi.org/10.5772/intechopen.79530

    Book  Google Scholar 

  16. Yoshimura, T., Ijiri, M., Shimonishi, D., and Tanaka, K., Micro-forging and peening aging produced by ultra-high-temperature and pressure cavitation, Int. J. Adv. Technol., 2019, vol. 10, no. 1, p. 1, https://doi.org/10.24105/0976-4860.10.227

    Article  Google Scholar 

  17. Ijiri, M. and Yoshimura, T., Evolution of surface to interior microstructure of SCM435 steel after ultra-high-temperature and ultra-high-pressure cavitation processing, J. Mater. Process. Technol., 2018, vol. 251, p. 160.

    Article  Google Scholar 

  18. Sadighi-Bonabi, R., Rezaee, N., Ebrahimi, H., and Mirheydari, M., Interaction of two oscillating sonoluminescence bubbles in sulfuric acid, Phys. Rev. E, 2010, vol. 82, p. 016316-1.

    Article  Google Scholar 

  19. Didenko, Y.T., McNamara, W.B., and Suslick, K.S., Effect of noble gases on sonoluminescence temperatures during multibubble cavitation, Phys. Rev. Lett., 2000, vol. 84, no. 4, p. 777.

    Article  Google Scholar 

  20. Sivalingam, G., Agarwal, N., and Madras, G., Distributed midpoint chain scission in ultrasonic degradation of polymers, AIChE J., 2004, vol. 50, no. 9, p. 2258.

    Article  Google Scholar 

  21. Basedow, A.M. and Ebert, K.H., Ultrasonic degradation of polymers in solution, Adv. Polym. Sci., 1977, vol. 22, p. 83.

    Article  Google Scholar 

  22. Rayleigh, L., On the pressure developed in a liquid during the collapse of a spherical cavity, Philos. Mag., 1917, vol. 34, no. 200, p. 94.

    Article  Google Scholar 

  23. Plesset, M.W., The dynamics of cavitation bubbles, J. Appl. Mech., 1949, vol. 16, no. 3, p. 277.

    Google Scholar 

  24. William, B., McNamara, W.B. III, Didenko, Y.T., and Suslick, K.S., Sonoluminescence temperatures during multi-bubble cavitation, Nature, 1999, vol. 401, p. 772.

    Article  Google Scholar 

  25. Sehgal, C., Steer, R.P., Sutherland, R.G., and Verrall, R.E., Sonoluminescence of argon saturated alkali metal salt solutions as a probe of acoustic cavitation, J. Chem. Phys., 1979, vol. 70, p. 2242.

    Article  Google Scholar 

  26. Didenko, Y.T. and Pugach, S.P., Spectra of water sonoluminescence, J. Phys. Chem., 1994, vol. 98, p. 9742.

    Article  Google Scholar 

  27. Matula, T.J., Roy, R.A., Mourad, P.D., McNamara, W.B. III, and Suslick, K.S., Comparison of multibubble and single-bubble sonoluminescence spectra, Phys. Rev. Lett., 1995, vol. 75, p. 2602.

    Article  Google Scholar 

  28. Yasui, K., Fundamentals of acoustic cavitation and sonochemistry, in Theoretical and Experimental Sonochemistry Involving Inorganic Systems, Pankaj and Ashokkumar, M., Eds., New York: Springer-Verlag, 2011, chap. 1, pp. 1–29.

  29. Gompf, B., Gunther, R., Nick, G., Pecha, R., and Eisenmenger, W., Resolving sonoluminescence pulse width with time-correlated single photon counting, Phys. Rev. Lett., 1997, vol. 79, p. 1405.

    Article  Google Scholar 

  30. Gaitan, D.F., Crum, L.A., Church, C.C., and Roy, R.A., Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble, J. Acoust. Soc. Am., 1992, vol. 91, no. 6, p. 3166.

    Article  Google Scholar 

  31. Brenner, M.P., Hilgenfeldt, S., and Lohse, D., Single-bubble sonoluminescence, Rev. Mod. Phys., 2002, vol. 74, p. 425.

    Article  Google Scholar 

  32. Ijiri, M. and Yoshimura, T., Sustainability of compressive residual stress on the processing time of water jet peening using ultrasonic power, Heliyon, 2018, vol. 4, p. e00747. https://doi.org/10.1016/j.heliyon.2018

    Article  Google Scholar 

  33. Niishiro, R. and Kudo, A., Development of visible-light-driven TiO2 and SrTiO3 photocatalysts doped with metal cations for H2 or O2 evolution, Solid State Phenom., 2010, vol. 162, p. 29.

    Article  Google Scholar 

  34. Liu, H., Yuan, J., Shangguan, W., and Teraoka, Y., Visible-light-responding BiYWO6 solid solution for stoichiometric photocatalytic water splitting, J. Phys. Chem. C, 2008, vol. 112, no. 23, p. 8521.

    Article  Google Scholar 

  35. Yoshimura, T., Komura, M., and Sato, K., Study on improved photocatalytic properties of titanium oxide by ejector method, J. Jet Flow Eng., 2014, vol. 30 no. 2, p. 4.

    Google Scholar 

  36. Minnaert, M., On musical air-bubbles and the sound of running water, Philos. Mag., 1993, vol. 16, no. 104, p. 235. https://doi.org/10.1080/14786443309462277

    Article  Google Scholar 

  37. Atchley, A., The Blake threshold of cavitation nucleus having a radius-dependent surface tension, J. Acoust. Soc. Am., 1988, vol. 85, no. 1, p. 152.

    Article  Google Scholar 

  38. Peng, G., Oguma, Y., and Shimizu, S., Numerical simulation of unsteady cavitating jet by a compressible bubbly mixture flow method, IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 163, art. ID 012037. https://doi.org/10.1088/1755-1315/163/1/012037

  39. Peng, G., Tryggvason, G., and Shimizu, S., Two-dimensional direct numerical simulation of bubble cloud cavitation by front-tracking method, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 72, art. ID 012001. https://doi.org/10.1088/1757-899X/72/1/012001

  40. Ijiri, M., Shimonishi, D., Tani, S., Okada, N., Yamamoto, M., Nakagawa, D., Tanaka, K., and Yoshimura, T., Multifunction cavitation technology to improve the surface function of Al-Cu alloy, Int. J. Lightweight Mater. Manuf., 2019, vol. 2, p. 50.

    Google Scholar 

Download references

Funding

This research was supported in part by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research C, Grant no. 16K06029, and by the Light Metal Educational Foundation, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshihiko Yoshimura or Masataka Ijiri.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toshihiko Yoshimura, Shimonishi, D., Hashimoto, D. et al. Effect of Processing Degree and Nozzle Diameter on Multifunction Cavitation. Surf. Engin. Appl.Electrochem. 57, 106–116 (2021). https://doi.org/10.3103/S1068375521010154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375521010154

Keywords:

Navigation