Skip to main content
Log in

Industrial Tests of Microcrystalline Complex Alkaline Earth Metal Alloys when Casting Pipe Steel

  • Published:
Steel in Translation Aims and scope

Abstract

The results of studying the effect of microcrystalline complex alloys with alkaline earth metals (AEM) on the quality indicators of 17G1S-U pipe steel have been considered. It has been shown that the treatment of steel with these alloys reduces both the maximum score of non-metallic inclusions (NI) and the mean level of contavmination for the main types of inclusions including corrosive-active ones (CANI). Alongside with this, fine calcium, strontium and barium oxysulfides with a reduced oxygen content are formed in the metal. The complex alloys with alkali-earth metals contribute to obtaining a more homogeneous and refined metal structure, an increase in the cold resistance and corrosion resistance of steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Rodionova, I.G., Baklanova, O.N., Amezhnov, A.V., et al., Influence of non-metallic inclusions on the corrosion resistance of carbon and low alloyed steels for oilfield pipelines, Stal’, 2017, no. 10, pp. 41–48.

  2. Filippov, G.A., Rodionova, I.G., Baklanova, O.N., et al., Corrosion resistance of steel pipelines, Tekhnol. Met., 2004, no. 2, pp. 24–27.

  3. Ryabchikov, I.V., Mizin, V.G., and Andreev, V.V., Kremnistye ferrosplavy i modifikatory novogo pokoleniya. Proizvodstvo i primenenie (Siliceous Ferroalloys and New Generation Modifiers), Chelyabinsk: Yuzh.-Ural. Gos. Univ., 2013.

  4. Bakin, I.V., Shaburova, N.A., Ryabchikov, I.V., et al., Experimental study of refining and modification of steel with Si–Ca, Si–Sr, and Si–Ba alloys, Steel Transl., 2019, vol. 49, no. 8, pp. 543–547.

    Article  Google Scholar 

  5. Golubtsov, V.A., Ryabchikov, I.V., and Usmanov, R.G., Mikrokristallicheskie kompleksnye modifikatory v proizvodstve stali (Microcrystalline Complex Modifiers in Steel Production), Chelyabinsk: Yuzh.-Ural. Gos. Univ., 2017.

  6. Sheshukov, O.Yu., Lapin, M.V., Nekrasov, I.V., et al., Steel quality and structure of modifiers, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2014, no. 8 (1376), pp. 29–36.

  7. Sheshukov, O.Y., Yermakova, V.P., Marshuk, L.A., et al., Modifier Structure and Metal Quality, Proc. 2014 Sustainable Industrial Processing Summit SIPS 2014, Mont-Royal: FLOGEN Star Outreach, 2014, vol. 3, pp. 489–497.

    Google Scholar 

  8. Shapovalov, A.N., Shevchenko, E.A., and Baskov, S.N., The technology of preliminary deoxidation of steel at the Ural Steel Company, Chern. Met., 2019, no. 8 (1052), pp. 10–16.

  9. Grigorovich, K.V., Demin, K.Yu., Arsenkin, A.M., and Garber, A.K., Prospects of the application of barium-bearing master alloys for the deoxidation and modification of a railroad metal, Russ. Metall. (Engl. Transl.), 2011, vol. 2011, no. 9, pp. 912–920.

  10. Gollapalli, V., Venkata Rao, M.B., Karamched Phani, S., et al., Modification of oxide inclusions in calcium-treated Alkilled high sulphur steels, Ironmaking Steelmaking, 2019, vol. 46, no. 7, pp. 663–670.

    Article  CAS  Google Scholar 

  11. Bizyukov, P.V. and Giese, S.R., Effects of Zr, Ti, and Al additions on nonmetallic inclusions and impact toughness of cast low-alloy steel, J. Mater. Eng. Perform., 2017, vol. 26, no. 4, p. 1878.

    Article  CAS  Google Scholar 

  12. Li, X.B., Min, Y., and Liu, C.J., Influence of zirconium on mechanical properties and phase transformation in low carbon steel, Mater. Sci. Technol., 2016, vol. 32, no. 5, p. 454.

    Article  Google Scholar 

  13. Gao, J., Fu, P., Liu, H., et al., Effects of rare earth on the microstructure and impact toughness of H13 steel, Metals, 2015. 5, pp. 383–394.

    Article  Google Scholar 

  14. Safronov, A.A., Movchan, M.A., Dub, V.S., et al., Production of corrosion-resistant 09GSF steel, Steel Transl., 2016, vol. 46, no. 2, pp. 150–158.

    Article  Google Scholar 

  15. Golubtsov, V.A., Milyuts, V.G., and Tsukanov, V.V., Influence of complex modification on contamination of shipbuilding steel with non-metallic inclusions, Tyazh. Mashinostr., 2013, no. 1, pp. 2–5.

  16. Bakin, I.V., Mikhailov, G.G., and Golubtsov, V.A., Methods for improving the efficiency of steel modifying, Mater. Sci. Forum, 2019, vol. 946, pp. 215–222.

    Article  Google Scholar 

  17. Shapovalov, A.N., Golubtsov, V.A., Bakin, I.V., et al., Application of complex modifiers to reduce contamination of steel with corrosive non-metallic inclusions, Chern. Met., 2020, no. 6 (1062), pp. 4–10.

  18. STO RosNITI 00190420-001–2007. Metod opredeleniya stoikosti trubnykh stalei k ravnomernoi korrozii (STO RosNITI 00190420-001–2007. Determination of Resistance of Pipe Steel to Heterogenic Corrosion), Chelyabinsk: Ross. Nauchno-Issled. Inst. Trubn. Prom., 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Bakin.

Additional information

Translated by M. Astrov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakin, I.V., Shapovalov, A.N., Kuznetsov, M.S. et al. Industrial Tests of Microcrystalline Complex Alkaline Earth Metal Alloys when Casting Pipe Steel. Steel Transl. 50, 795–800 (2020). https://doi.org/10.3103/S0967091220110030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091220110030

Keywords:

Navigation