Skip to main content
Log in

Criteria for the Height of an Atom

  • Published:
Moscow University Mathematics Bulletin Aims and scope

Abstract

In this paper three criteria for the height of an atom in terms of its \(f\)-graph are established. The obstacles to the oriented embeddability of the \(f\)-graph into the plane are found. The combinatorial properties of labeled oriented cycles, which are a generalization of chord diagrams, are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems (CRC Press, Boca Raton, FL, 2004). doi https://doi.org/10.1201/9780203643426

    Book  MATH  Google Scholar 

  2. V. O. Manturov, ‘‘Bifurcations, Atoms, and Knots,’’ Moscow Univ. Math. Bull. 55, 1 (2000).

    MathSciNet  MATH  Google Scholar 

  3. A. T. Fomenko, ‘‘The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability,’’ Math. USSR Izv. 29, 629–658 (1987). doi https://doi.org/10.1070/IM1987v029n03ABEH000986

    Article  MATH  Google Scholar 

  4. A. T. Fomenko, ‘‘Topological invariants of Liouville integrable Hamiltonian systems,’’ Funct. Anal. Its Appl. 22, 286–296 (1988). doi https://doi.org/10.1007/BF01077420

    Article  MathSciNet  MATH  Google Scholar 

  5. A. T. Fomenko, ‘‘The symplectic topology of completely integrable Hamiltonian systems,’’ Russ. Math. Surv. 44, 181–219 (1989). doi https://doi.org/10.1070/RM1989v044n01ABEH002006

    Article  MathSciNet  MATH  Google Scholar 

  6. A. T. Fomenko, ‘‘A bordism theory for integrable nondegenerate Hamiltonian systems with two degrees of freedom. A new topological invariant of higher-dimensional integrable systems,’’ Math. USSR Izv. 55, 731–759 (1987). doi https://doi.org/10.1070/IM1992v039n01ABEH002224

    Article  MATH  Google Scholar 

  7. A. T. Fomenko, ‘‘A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds,’’ Funct. Anal. Its Appl. 25, 262–272 (1991). doi https://doi.org/10.1007/BF01080078

    Article  MathSciNet  MATH  Google Scholar 

  8. A. T. Fomenko and H. Zieschang, ‘‘A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom,’’ Math. USSR Izv. 36, 567–596 (1991). doi https://doi.org/10.1070/IM1991v036n03ABEH002035

    Article  MathSciNet  MATH  Google Scholar 

  9. D. P. Ilyutko and V. O. Manturov, Virtual Knots: The State of the Art. Series on Knots and Everything (World Scientific, Singapore, 2012).

    MATH  Google Scholar 

  10. I. M. Nikonov, ‘‘Height atoms whose symmetry groups act transitively on their vertex sets,’’ Moscow Univ. Math. Bull. 71, 233–241 (2016). doi https://doi.org/10.3103/S0027132216060036

    Article  MathSciNet  MATH  Google Scholar 

  11. V. A. Trifonova, ‘‘Partially symmetric height atoms,’’ Moscow Univ. Math. Bull. 73, 71–78 (2018). doi https://doi.org/10.3103/S0027132218020043

    Article  MathSciNet  MATH  Google Scholar 

  12. N. V. Volchanetskii and I. M. Nikonov, ‘‘Maximally symmetric height atoms,’’ Moscow Univ. Math. Bull. 68, 83–86 (2013). doi https://doi.org/10.3103/S0027132213020010

    Article  MathSciNet  MATH  Google Scholar 

  13. A. A. Oshemkov, ‘‘Morse functions on two-dimensional surfaces. Encoding of singularities,’’ Proc. Steklov Inst. Math. 205, 119–127 (1995).

    MathSciNet  Google Scholar 

  14. A. Bouchet, ‘‘Circle graph obstructions,’’ J. Combin. Theory, Ser. B. 60, 107–144 (1994). doi https://doi.org/10.1006/jctb.1994.1008

    Article  MathSciNet  MATH  Google Scholar 

  15. S. V. Chmutov, S. V. Duzhin, and S. K. Lando, ‘‘Vassiliev knot invariants II. Intersection graph conjecture for trees, singularities and bifurcations,’’ Adv. Sov. Math. 21, 127–134 (1994).

    MATH  Google Scholar 

  16. B. Mellor, ‘‘The intersection graph conjecture for loop diagrams,’’ J. Knot Theory Its Ramifications 9, 187–211 (2000). doi https://doi.org/10.1142/S0218216500000098

    Article  MathSciNet  MATH  Google Scholar 

  17. S. V. Chmutov and S. K. Lando, ‘‘Mutant knots and intersection graphs,’’ Algebr. Geom. Topol. 7, 1579–1598 (2007). doi https://doi.org/10.2140/agt.2007.7.1579

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks A. T. Fomenko and I. M. Nikonov for the problem formulation and attention to this work.

Funding

The work is supported by the Program of the President of the Russian Federation ‘‘Leading Scientific Schools of the Russian Federation’’ (grant no. NSh–6399.2018.1, agreement no. 075–02–2018–867) and by the Theoretical Physics and Mathematics Advancement Foundation ‘‘BASIS’’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Trifonova.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trifonova, V.A. Criteria for the Height of an Atom. Moscow Univ. Math. Bull. 75, 102–116 (2020). https://doi.org/10.3103/S0027132220030079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027132220030079

Keywords:

Navigation