Skip to main content
Log in

Band Structure of Tungsten Oxide W20O58 with Ideal Octahedra

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The band structure, density of states, and the Fermi surface of a tungsten oxide WO2.9 with idealized crystal structure (ideal octahedra WO6 creating a “square lattice”) is obtained within the density functional theory in the generalized gradient approximation. Because of the oxygen vacancies ordering this system is equivalent to the compound W20O58 (Magnéli phase), which has 78 atoms in unit cell. We show that 5d-orbitals of tungsten atoms located immediately around the voids in the zigzag chains of edge-sharing octahedra give the dominant contribution near the Fermi level. These particular tungsten atoms are responsible of low-energy properties of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. G. Bednorz and K. A. Müller, Zeitschr. Phys. B 64, 189 (1986).

    Google Scholar 

  2. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  3. M. V. Sadovskii, Phys. Usp. 51, 1243 (2008).

    Article  Google Scholar 

  4. P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  5. M. M. Korshunov, Phys. Usp. 57, 813 (2014).

    Article  ADS  Google Scholar 

  6. L. A. Bursill and B. G. Hyde, J. Solid State Chem. 4, 430 (1972).

    Article  ADS  Google Scholar 

  7. W. Sahle and M. Nygren, J. Solid State Chem. 48, 154 (1983).

    Article  ADS  Google Scholar 

  8. A. Shengelaya, K. Conder, and K. A. Müller, J. Supercond. Nov. Magn. 33, 301 (2020).

    Article  Google Scholar 

  9. A. Aird and E. K. H. Salje, J. Phys.: Condens. Matter 10, L377 (1998).

    ADS  Google Scholar 

  10. Y. Kopelevich, R. R. da Silva, and B. C. Camargo, Phys. C (Amsterdam, Neth.) 514, 237 (2015).

  11. S. Reich and Y. Tsabba, Eur. Phys. J. B 9, 1 (1999).

    Article  ADS  Google Scholar 

  12. A. Shengelaya and K. A. Müller, J. Supercond. Nov. Magn. 32, 3 (2019).

    Article  Google Scholar 

  13. H. Hamdi, E. K. H. Salje, Ph. Ghosez, and E. Bousquet, Phys. Rev. B 94, 245124 (2016).

    Article  ADS  Google Scholar 

  14. G. A. de Wijs, P. K. de Boer, R. A. de Groot, and G. Kresse, Phys. Rev. B 59, 2684 (1999).

    Article  ADS  Google Scholar 

  15. P. P. González-Borrero, F. Sato, A. N. Medina, M. L. Baesso, A. C. Bento, G. Baldissera, C. Persson, G. A. Niklasson, C. G. Granqvist, and A. Ferreira da Silva, Appl. Phys. Lett. 96, 061909 (2010).

    Article  ADS  Google Scholar 

  16. M. B. Johansson, G. Baldissera, I. Valyukh, C. Persson, H. Arwin, G. A. Niklasson, and L. Österlund, J. Phys.: Condens. Matter 25, 205502 (2013).

    ADS  Google Scholar 

  17. Y. Ping, D. Rocca, and G. Galli, Phys. Rev. B 87, 165203 (2013).

    Article  ADS  Google Scholar 

  18. A. C. Tsipis and C. A. Tsipis, J. Phys. Chem. A 104, 859 (2000).

    Article  Google Scholar 

  19. M. G. Stachiotti, F. Cor’a, C. R. A. Catlow, and C. O. Rodriguez, Phys. Rev. B 55, 7508 (1997).

    Article  ADS  Google Scholar 

  20. F. Corà, A. Patel, N. M. Harrison, R. Dovesi, and C. R. A. Catlow, J. Am. Chem. Soc. 118, 12174 (1996).

    Article  Google Scholar 

  21. D. B. Migas, V. L. Shaposhnikov, V. N. Rodin, and V. E. Borisenko, J. Appl. Phys. 108, 093713 (2010).

    Article  ADS  Google Scholar 

  22. F. Wang, C. di Valentin, and G. Pacchioni, J. Phys. Chem. C 115, 8345 (2011).

    Article  Google Scholar 

  23. F. Wang, C. di Valentin, and G. Pacchioni, Phys. Rev. B 84, 073103 (2011).

    Article  ADS  Google Scholar 

  24. S. Zh. Karazhanov, Y. Zhang, A. Mascarenhas, S. Deb, and W. Wang, Solid State Ion 165, 43 (2003).

    Article  Google Scholar 

  25. F. Mehmood, R. Pachter, N. R. Murphy, W. E. Johnson, and Ch. V. Ramana, J. Appl. Phys. 120, 233105 (2016).

    Article  ADS  Google Scholar 

  26. A. D. Walkingshaw, N. A. Spaldin, and E. Artacho, Phys. Rev. B 70, 165110 (2004).

    Article  ADS  Google Scholar 

  27. S. Tosoni, C. di Valentin, and G. Pacchioni, J. Phys. Chem. C 118, 3000 (2014).

    Article  Google Scholar 

  28. A. Hjelm, C. G. Granqvist, and J. M. Wills, Phys. Rev. B 54, 2436 (1996).

    Article  ADS  Google Scholar 

  29. B. Ingham, S. C. Hendy, S. V. Chong, and J. L. Tallon, Phys. Rev. B 72, 075109 (2005).

    Article  ADS  Google Scholar 

  30. M. N. Huda, Y. Yan, S.-H. Wei, M. M. Al-Jassim, Phys. Rev. B 80, 115118 (2009).

    Article  ADS  Google Scholar 

  31. F. Corà, M. G. Stachiotti, C. R. A. Catlow, and C. O. Rodriguez, J. Phys. Chem. 101, 3945 (1997).

    Article  Google Scholar 

  32. M. N. Huda, Y. Yan, Ch.-Y. Moon, S.-H. Wei, and M. M. Al-Jassim, Phys. Rev. B 77, 195102 (2008).

    Article  ADS  Google Scholar 

  33. B. Chen, J. Laverock, L. F. J. Piper, A. R. H. Preston, S. W. Cho, A. DeMasi, K. E. Smith, D. O. Scanlon, G. W. Watson, R. G. Egdell, P.-A. Glans, and J.‑H. Guo, J. Phys.: Condens. Matter 25, 165501 (2013).

    ADS  Google Scholar 

  34. D. B. Migas, V. L. Shaposhnikov, and V. E. Borisenko, J. Appl. Phys. 108, 093714 (2010).

    Article  ADS  Google Scholar 

  35. A. Magnéli, Arkiv Kemi 1, 513 (1949).

    Google Scholar 

  36. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  37. The Elk Code. http://elk.sourceforge.net/.

  38. Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, and I. Tanaka, Comput. Mater. Sci. 128, 140 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.G. Ovchinnikov and M.V. Sadovskii for useful discussions. The computations were performed at the URAN supercomputer, Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research, the Government of Krasnoyarsk Territory, and Krasnoyarsk Regional Fund of Science (project no. 19-42-240007 “Electronic Correlation Effects and Multiorbital Physics in Iron-Based Materials and Cuprates,” M.M.K.), by the Russian Foundation for Basic Research (project nos. 18-02-00281 and 20-02-00011, I.A.N., N.S.P., A.A.S.), and by the of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (project no. MK-1683.2019.2, N.S.P. and A.A.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Korshunov or A. A. Slobodchikov.

Additional information

Translated by the author

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korshunov, M.M., Nekrasov, I.A., Pavlov, N.S. et al. Band Structure of Tungsten Oxide W20O58 with Ideal Octahedra. Jetp Lett. 113, 57–60 (2021). https://doi.org/10.1134/S0021364021010057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021010057

Navigation