Skip to main content
Log in

Tunneling Relaxation Mechanisms of the Jahn–Teller Complexes in a CaF2:Cr2+ Crystal

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The temperature dependences of attenuation and the velocity of ultrasonic waves at frequencies of 26–158 MHz in a CaF2 fluorite crystal at the substitution of Jahn–Teller Cr2+ centers for calcium ions have been studied. An abnormally high relaxation rate, which is two orders of magnitude higher than the relaxation rate in other previously studied CaF2:Ni2+ and SrF2:Cr2+ fluorites, has been found in the system of Jahn–Teller complexes in the low-temperature region. It has been shown that the global minima of the adiabatic potential energy surface of the Cr2+\({\text{F}}_{8}^{ - }\) complexes in the CaF2:Cr2+ crystal also have orthorhombic symmetry but are separated by significantly lower potential energy barriers than in CaF2:Ni2+ and SrF2:Cr2+ crystals. It has been found that tunneling relaxation mechanisms (direct and two-phonon transitions) are dominant, rather than thermal activation, in CaF2:Cr2+ in the temperature range where the Jahn–Teller effect is manifested in an ultrasonic experiment. The parameters characterizing these relaxation mechanisms have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. H. A. Jahn and E. Teller, Proc. R. Soc. A 161, 220 (1937).

    ADS  Google Scholar 

  2. I. B. Bersuker, J. Phys.: Conf. Ser. 833, 012001 (2017).

    Google Scholar 

  3. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, and J. Rödel, Appl. Phys. Rev. 4, 041305 (2017).

    Article  ADS  Google Scholar 

  4. M. D. Kaplan and G. O. Zimmerman, J. Phys.: Conf. Ser. 833, 012007 (2017).

    Google Scholar 

  5. D. Liu, N. Iwahara, and L. F. Chibotaru, Phys. Rev. B 97, 115412 (2019).

    Article  ADS  Google Scholar 

  6. J. L. Dunn and E. Rashed, J. Phys.: Conf. Ser. 1148, 012003 (2018).

    Google Scholar 

  7. Yu. S. Orlov, S. V. Nikolaev, S. G. Ovchinnikov, and A. I. Nesterov, JETP Lett. 112, 250 (2020).

    Article  ADS  Google Scholar 

  8. H. Koizumi, J. Phys.: Conf. Ser. 833, 012016 (2017).

    Google Scholar 

  9. S. Merten, O. Shapoval, B. Damaschke, K. Samwer, and V. Moshnyaga, Sci. Rep. 9, 2387 (2019).

    Article  ADS  Google Scholar 

  10. V. Polinger and I. B. Bersuker, J. Phys.: Conf. Ser. 833, 012012 (2017).

    Google Scholar 

  11. M. Angeli, E. Tosatti, and M. Fabrizio, Phys. Rev. X 9, 041010 (2019).

    Google Scholar 

  12. A. V. Kuzmin, S. S. Khasanov, K. P. Meletov, and R. P. Shibaeva, J. Exp. Theor. Phys. 128, 878 (2019).

    Article  ADS  Google Scholar 

  13. K. M. Krasikov, A. N. Azarevich, V. V. Glushkov, A. L. Khoroshilov, A. V. Bogach, N. Yu. Shitsevalova, V. B. Filippov, and N. E. Sluchanko, JETP Lett. 112, 413 (2020).

    Article  ADS  Google Scholar 

  14. M. D. Sturge, The Jahn–Teller Effect in Solids, Vol. 20 of Solid State Physics, Ed. by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic, New York, London, 1968), p. 91.

  15. W. Ulrici, Phys. Status Solidi 84, K155 (1977).

    Article  ADS  Google Scholar 

  16. M. M. Zaripov, V. F. Tarasov, V. A. Ulanov, G. S. Shakurov, and M. L. Popov, Phys. Solid State 37, 437 (1995).

    ADS  Google Scholar 

  17. P. B. Oliete, V. M. Orera, and P. J. Alonso, Phys. Rev. B 53, 3047 (1996).

    Article  ADS  Google Scholar 

  18. P. B. Oliete, V. M. Orera, and P. J. Alonso, Phys. Rev. B 54, 12099 (1996).

    Article  ADS  Google Scholar 

  19. S. K. Hoffmann, J. Goslar, S. Lijewski, and V. A. Ulanov, J. Chem. Phys. 127, 124705 (2007).

    Article  ADS  Google Scholar 

  20. V. V. Gudkov, in The Jahn–Teller Effect: Fundamentals and Implications for Physics and Chemistry, Ed. by H. Koppel, D. R. Yarkony, and H. Barentzen (Springer, Berlin, Heidelberg, 2009), p. 743.

    Google Scholar 

  21. M. N. Sarychev, W. A. L. Hosseny, A. S. Bondarevskaya, I. V. Zhevstovskikh, A. V. Egranov, O. S. Grunskiy, V. T. Surikov, N. S. Averkiev, and V. V. Gudkov, J. Alloys Compd. 848, 156167 (2020).

    Article  Google Scholar 

  22. N. S. Averkiev, I. B. Bersuker, V. V. Gudkov, I. V. Zhevstovskikh, M. N. Sarychev, S. Zherlitsyn, S. Yasin, Yu. V. Korostelin, and V. T. Surikov, J. Exp. Theor. Phys. 129, 72 (2019).

    Article  ADS  Google Scholar 

  23. J. J. Krebs and G. H. Stauss, Phys. Rev. B 16, 971 (1977).

    Article  ADS  Google Scholar 

  24. G. H. Stauss, J. J. Krebbs, and R. L. Henry, Phys. Rev. B 16, 974 (1977).

    Article  ADS  Google Scholar 

  25. J. T. Vallin and G. T. Watkins, Phys. Rev. B 9, 2051 (1974).

    Article  ADS  Google Scholar 

  26. J. Dziesiaty, P. Peka, M. U. Lehr, A. Klimakow, S. Muller, and H.-J. Schulz, Z. Phys. Chem. 201, 63 (1997).

    Article  Google Scholar 

  27. M. M. Zaripov, V. F. Tarasov, V. A. Ulanov, G. S. Shakurov, and M. L. Popov, Phys. Solid State 37, 437 (1995).

    ADS  Google Scholar 

  28. M. M. Zaripov, V. F. Tarasov, V. A. Ulanov, and G. S. Shakurov, Phys. Solid State 38, 249 (1996).

    ADS  Google Scholar 

  29. M. M. Zaripov, V. F. Tarasov, V. A. Ulanov, and G. S. Shakurov, Phys. Solid State 44, 2050 (2002).

    Article  ADS  Google Scholar 

  30. P. B. Oliete, V. M. Orera, and P. J. Alonso, J. Phys.: Condens. Matter 8, 6797 (1996).

    Google Scholar 

  31. P. B. Oliete, C. A. Bates, and J. L. Dunn, J. Phys.: Condens. Matter 11, 2579 (1999).

    ADS  Google Scholar 

  32. V. V. Gudkov, I. B. Bersuker, I. V. Zhevstovskikh, Yu. V. Korostelin, and A. I. Landman, J. Phys.: Condens. Matter 23, 115401 (2011).

    ADS  Google Scholar 

  33. N. S. Averkiev, I. B. Bersuker, V. V. Gudkov, I. V. Zhevstovskikh, M. N. Sarychev, S. Zherllitsyn, S. Yasin, G. S. Shakurov, V. A. Ulanov, and V. T. Surikov, in Fluorite: Structure, Chemistry and Applications, Ed. by M. van Asten (Nova Science, New York, 2019), Chap. 2, p. 111.

    Google Scholar 

  34. I. V. Zhevstovskikh, I. B. Bersuker, V. V. Gudkov, N. S. Averkiev, M. N. Sarychev, S. Zherlitsyn, S. Yasin, G. S. Shakurov, V. A. Ulanov, and V. T. Surikov, J. Appl. Phys. 119, 225108 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

The work at the Ural Federal University was supported by the Russian Foundation for Basic Research (project no. 18-02-00332а); by the Center of Excellence “Radiation and Nuclear Technologies,” Ural Federal University; and by the Ministry of Science and Higher Education of the Russian Federation (state task no. FEUZ-2020-0060). The work at the South Ural State University was supported by the Government of the Russian Federation (act no. 211, contract no. 02.A03.21.0011, project 5-100). The study at the Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, was supported by the Ministry of Science and Higher Education of the Russian Federation (state task no. AAAA-A18-118020190098-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Gudkov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarychev, M.N., Bondarevskaya, A.S., Zhevstovskikh, I.V. et al. Tunneling Relaxation Mechanisms of the Jahn–Teller Complexes in a CaF2:Cr2+ Crystal. Jetp Lett. 113, 47–51 (2021). https://doi.org/10.1134/S0021364021010082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021010082

Navigation