Skip to main content
Log in

Infrared Spectroscopy of Blood Serum from Patients with Oncohematological Diseases

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A comparative analysis of the secondary structure of blood serum proteins was carried out in patients with multiple myeloma, chronic lymphocytic leukemia and in healthy donors. The secondary structure of proteins in serum was determined using an infrared spectroscopy method. It was demonstrated that the proposed approach allows one to register a decrease in the portion of α-helical regions and an increase in the number of β-sheets in the blood serum samples of patients with multiple myeloma compared with healthy donors and patients with chronic lymphocytic leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. K. Kumar, V. Rajkumar, R. A. Kyle, et al., Nat. Rev. Dis. Primers 3, 17046 (2017).

    Article  Google Scholar 

  2. C. Rollig, S. Knop, M. Bornhauser, et al., Lancet 385 (9983), 2197 (2015).

    Article  Google Scholar 

  3. S. V. Rajkumar, Am. J. Hematol. 93 (8), 1091 (2018).

    Article  Google Scholar 

  4. L. P. Mendeleeva, O. M. Votyakova, O. S. Pokrovskaya, et al., Gematol. Transfuziol. 61 (1–2), (2016).

    Google Scholar 

  5. R. A. Kyle, S. V. Rajkumar, et al., Leukemia 23 (1), 3 (2009).

    Article  Google Scholar 

  6. S. S. Bessmet’tsev, Klin. Onkogematol. 6 (3), 237 (2013).

    Google Scholar 

  7. K. A. Majorek, P. J. Porebski, A. Dayal, et al., Mol. Immunol. 52 (3–4), 174 (2012).

  8. A. A. Bhattacharya, T. Grune, S. Curry, et al., J. Mol. Biol. 303 (5), 721 (2000).

    Article  Google Scholar 

  9. H. R. Costantino, J. D. Andya, J. D. Shire, et al., Pharm. Sci. 3 (3), 121 (1997).

    Google Scholar 

  10. L. J. Harris, S. B. Larson, K. W. Hasel, et al., Biochemistry 36 (7), 1581 (1997).

    Article  Google Scholar 

  11. H. Yang, S. Yang, and J. Kong, Nat. Protoc. 10 (3), 382 (2015).

    Article  Google Scholar 

  12. G. E. Trante, in Encyclopedia of Spectroscopy and Spectrometry (Academic, Amsterdam, 2017), pp. 740–758.

    Google Scholar 

  13. I. Rehman, Z. Movasaghi, and S. Rehman, in Vibration Spectroscopy for Tissue Analysis (CRC Press, New York, 2013), p. 356.

    Google Scholar 

  14. L. Benezzeddine-Boussaidi, G. Cazorla, and A. M. Melin, Clin. Chem. Lab. Med. 47 (1), 83 (2009).

    Article  Google Scholar 

  15. A. M. Polyanichko, N. M. Romanov, T. Y. Starkova, et al., Cell Tissue Biol. 8 (4), 352 (2014).

    Article  Google Scholar 

  16. L. V. Plotnikova, A. M. Polyanichko, T. Nosenko, et al., AIP Conf. Proc. 1760, 020052 (2016).

    Article  Google Scholar 

  17. A. M. Polyanichko and H. Wieser, Biopolymers 78 (6), 329 (2005).

    Article  Google Scholar 

  18. A. M. Polyanichko, V. V. Andrushchenko, E. V. Chikhirzhina, et al., Nucleic Acids Res. 32 (3), 989 (2004).

    Article  Google Scholar 

  19. T. S. Sych, Z. V. Reveguk, V. A. Pomogaev, et al., J. Phys. Chem. C 122 (51), 29549 (2018).

    Article  Google Scholar 

  20. L. V. Plotnikova, M. O. Kobeleva, E. V. Borisov, et al., Cell Tissue Biol. 13 (2), 130 (2019).

    Article  Google Scholar 

  21. M. K. Bellamy, J. Chem. Educ. 87 (12), 1399 (2010).

    Article  Google Scholar 

  22. A. Barth, Biochim. Biophys. Acta 1767 (9), 1073 (2007).

    Article  Google Scholar 

  23. E. Goormaghtigh, V. Cabiaux and J. M. Ruysschaert, Subcell. Biochem. 23, 405 (1994).

    Article  Google Scholar 

  24. J. Kong and S. Yu, Acta Biochim. Biophys. Sin. 39 (8), 549 (2007).

    Article  Google Scholar 

  25. A. Barth and C. Zscherp, Q. Rev. Biophys. 35 (4), 369 (2002).

    Article  Google Scholar 

  26. K. Murayama and M. Tomida, Biochemistry 43 (36), 11526 (2004).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

A part of the work was carried out using equipment of the resource centers of the research park of St. Petersburg State University (Center for Optical and Laser Materials Research, Center for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics, Nanotechnologies, Cryogenic Department).

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-08-01500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Polyanichko.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Statement of Compliance with Standards of Research Involving Humans as Subjects

All procedures performed in the study involving human participants were in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by A. Barkhash

Abbreviations: MM, multiple myeloma; IR, infrared; CLL, chronic lymphocytic leukemia; ATR, attenuated total reflection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telnaya, E.A., Plotnikova, L.V., Garifullin, A.D. et al. Infrared Spectroscopy of Blood Serum from Patients with Oncohematological Diseases. BIOPHYSICS 65, 981–986 (2020). https://doi.org/10.1134/S0006350920060214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350920060214

Navigation