Skip to main content
Log in

Effect of TiB2 on the Phase Composition, Microstructure, and Tribological Properties of AlCoCrFeNi/TiB2 Composites

  • COMPOSITE MATERIALS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

High entropy alloys (HEAs) attract more and more attention due to their simple structure, high strength and hardness, good ductility, and excellent softening, oxidation, corrosion, and wear resistance properties. Among the known HEA systems, the AlCoCrFeNi alloy exhibits complicated microstructure and excellent mechanical properties. In this study, the AlCoCrFeNi/TiB2 composites were prepared via power metallurgy route in combination with spark plasma sintering (SPS) technology. At first, the AlCoCrFeNi HEA powders were prepared by gas-atomization technology under Ar atmosphere with the high purity of raw elemental materials. The commercial TiB2 powders with average particle size of about 2 μm were used as the reinforcing agent to prepare the AlCoCrFeNi/TiB2 composites. The effect of TiB2 content on the phase, microstructure, and tribological properties of the synthesized AlCoCrFeNi/TiB2 composites were investigated by XRD, SEM, and EPMA, whereas also through friction and wear tests. The results show that phase transformation occurs with σ phase formation after sintering. The TiB2 particles tend to agglomerate and grow up with increased TiB2 content. The effect of TiB2 on the tribological behavior of the composites was studied through measuring the coefficient of friction (COF) and wear rate (W). The resulting values of COF and W show that the wear resistance of AlCoCrFeNi/TiB2 composites is improved with increasing the TiB2 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes,” Adv. Eng. Mater., 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  2. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, “Microstructures and properties of high-entropy alloys,” Prog. Mater. Sci., 61, 1–93 (2014).

    Article  Google Scholar 

  3. Y. Yu, J. Wang, J.S. Li, J. Yang, H.C. Kou, and W.M. Liu, “Tribological behavior of AlCoCrFeNi(Ti0.5) high entropy alloys under oil and MACs lubrication,” J. Mater. Sci. Tech., 32, 470–476 (2016).

    Article  CAS  Google Scholar 

  4. S.J. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, and Q. Yu, “Real-time observations of Trip-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy,” Nat. Commun., 11, 826 (2020).

    Article  Google Scholar 

  5. T.F. Yang, W. Guo, J.D. Poplawsky, D.Y. Li, L. Wang, Y. Li, W.Y. Hu, M.L. Crespillo, Z.F. Yan, Y. Zhang, and Y.G. Wang, “Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloyunder high temperature ion irradiation,” J. Alloys Compd., 188, 1–15 (2020).

    CAS  Google Scholar 

  6. Y.Z. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw, and B. Yang, “Homogenization of AlCoCrFeNi high-entropy alloys with improved corrosion resistance,” Corros. Sci., 133, 120–131 (2018).

    Article  CAS  Google Scholar 

  7. V.F. Gorban, M.I. Danylenko, M.A. Krapivka, and S.A. Firstov, “Structural and chemical microinhomogeneity of the high-entropy TiVZrNbHfTa coating,” Powder. Metall. Met. Ceram., 58 469–473 (2019).

    Article  CAS  Google Scholar 

  8. A. Munitz, S. Salhov, S. Hayun, and N. Frage, “Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy,” J. Alloys Compd., 683, 221–230 (2016).

    Article  CAS  Google Scholar 

  9. P.F. Zhou, D.H. Xiao, Z. Wu, and M. Song, “Microstructure and mechanical properties of AlCoCrFeNi high entropy alloys produced by spark plasma sintering,” Mater. Res. Express., 6, 0865e7 (2019).

    Article  CAS  Google Scholar 

  10. K.S. Li, K.H. Kang, K.R. Lim, and Y.S. Na, “Influence of compressive strain on the microstructural evolution of an AlCoCrFeNi high entropy alloy,” Mater. Charact., 132, 162–168 (2017).

    Article  Google Scholar 

  11. K.P. Kumara, M.G. Krishna, J.B. Rao, and N.R.M.R. Bhargava, “Fabrication and characterization of 2024 aluminium-high entropy alloy composites,” J. Alloys Compd., 640, 421–427 (2015).

    Article  Google Scholar 

  12. J. Chen, P.Y. Niu, T. Wei, L. Hao, Y.Z. Liu, X.H. Wang, and Y.L. Peng, “Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites,” J. Alloys Compd., 649, 630–634 (2015).

    Article  CAS  Google Scholar 

  13. G.H. Meng, X. Lin, H. Xie, C. Wang, S.Q. Wang, and X. Ding, “Reinforcement and substrate interaction in laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites,” J. Alloys Compd., 672, 660–667 (2016).

    Article  CAS  Google Scholar 

  14. P.F. Zhou, D.H. Xiao, and T.C. Yuan, “Comparison between ultrafine-grained WC–Co and WC–HEA–cemented carbides,” Powder Metall., 60, 1–6 (2016).

    Article  Google Scholar 

  15. G. Zhu, Y. Liu, and J.W. Ye, “Early high-temperature oxidation behavior of Ti(C, N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder,” Int. J. Refract. Met. H., 44, 35–41 (2014).

    Article  CAS  Google Scholar 

  16. Y.L. Li, H.Y. Xu, B.R. Ke, Y.C. Sun, K. Yang, W. Ji, W.M. Wang, and Z.Y. Fu, “TEM characterization of a Supra-Nano-Dual-Phase binder phase in spark plasma sintered TiB2–5 wt.% HEAs cermet,” Ceram. Int. 45, 9401–9405 (2019).

    Article  CAS  Google Scholar 

  17. Z. Fu and R. Koc, “TiNiFeCrCoAl high-entropy alloys as novel metallic binders for TiB2–TiC based composites,” Mater. Sci. Eng. A, 735, 302–309 (2018).

    Article  CAS  Google Scholar 

  18. E. Colombini, M.L. Gualtieri, R. Rosa, F. Tarterini, M. Zadra, A. Casagrande, and P. Veronesi, “SPSassisted Synthesis of SiCp reinforced high entropy alloys: reactivity of SiC and effects of pre-mechanical alloying and post-annealing treatment,” Powder Metall., 61, 64–72 (2017).

    Article  Google Scholar 

  19. A.S. Sharma, K. Biswas, and B. Basu, “Microstructure-hardness-fretting wear resistance correlation in ultrafine grained Cu–TiB2–Pb composites,” Wear, 319, 160–171 (2014).

    Article  Google Scholar 

  20. Z.Z. Fu and R. Koc, “Ultrafine TiB2–TiNiFeCrCoAl high-entropy alloy composite with enhanced mechanical properties,” Mater. Sci. Eng. A, 702, 184–188 (2017).

    Article  CAS  Google Scholar 

  21. S. Yadav, A. Aggrawal, A. Kumar, and K. Biswas, “Effect of TiB2 addition on wear behavior of (AlCrFeMnV)90Bi10 high entropy alloy composite,” Tribol. Int., 132, 62–74 (2019).

    Article  CAS  Google Scholar 

  22. D. Medved, J. Balko, R. Sedlák, A. Kovalčíková, I. Shepa, A. Naughton-Duszováb, E. Baczek, M. Podsiadlo, and J. Dusza, “Wear resistance of ZrB2 based ceramic composites,” Int. J. Refract. Met. H, 81, 214–224 (2019).

    Article  CAS  Google Scholar 

  23. J.T. Liang, K.C. Cheng, and S.H. Chen, “Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders,” J. Alloys Compd., 803, 484–490 (2019).

    Article  CAS  Google Scholar 

  24. S.Y. Xie, R.D. Li, T.C. Yuan, L.B. Zhou, M. Zhang, M.B. Wang, P.D. Niu, P. Cao, and C. Chen, “Effect of heating rate on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy produced by spark plasma sintering,” Mater. Charact., 154, 169–180 (2019).

    Article  CAS  Google Scholar 

  25. J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang C. , Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, and J.Th.M. De Hosson, “Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal,” Acta Mater., 131, 206–220 (2017).

  26. S. Sing, N. Wanderka, K. Kiefer, K. Siemensmeyer, and J Banhart, “Effect of decomposition of the Cr–F–Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties,” Ultramicroscopy, 111, 619–622 (2011).

    Article  Google Scholar 

  27. Z. Wu, M.C. Troparevsky, Y.F. Gao, J.R. Morris, G.M. Stocks, and H. Bei, “Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys,” Curr. Opin. Solid State Mater. Sci., 21, 267–284 (2017).

    Article  CAS  Google Scholar 

  28. Quantitative EDS X-ray microanalysis using SEM, Australian Microscopy and Microanalysis Research Facility (2014).

  29. M. Chen, L.W. Lan, X.H. Shi, H.J. Yang, M. Zhang, and J.W. Qiao, “The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature,” J. Alloys Compd., 777, 180–189 (2019).

    Article  CAS  Google Scholar 

  30. I.A. Podchernyaeva, S.A. Klimenko, V.M. Beresnev, V.M. Panashenko, I.N. Toryanik, S.An. Klimenko, and M.Yu. Kopeikina, “Formation of a tribofilm in the surface layer of Al–Ti–Cr–N–B magnetron coating on boron nitride during turning of hardened steel,” Metall. Met. C+, 54, 140–150 (2015).

    Article  CAS  Google Scholar 

  31. C.Y. Hsu, T.S. Sheu, J.W. Yeh, and S.K. Chen, “Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys,” Wear, 268, 653–659 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Wei.

Additional information

Published in Poroshkova Metallurgiya, Vol. 59, Nos. 9–10 (535), pp. 68–78, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J.G., Yang, B.T. & Wei, J.C. Effect of TiB2 on the Phase Composition, Microstructure, and Tribological Properties of AlCoCrFeNi/TiB2 Composites. Powder Metall Met Ceram 59, 537–545 (2021). https://doi.org/10.1007/s11106-021-00195-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-021-00195-4

Keywords

Navigation