Skip to main content
Log in

Morphological and Structural Studies of ZnO Nanotube Films Using Thermal Evaporation Technique

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Simple thermal evaporation technique has been used to prepare Pb-doped ZnO nanotube films on Si (100) substrate. X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) characterization have been employed to investigate the element’s contents, which indicates the presence of stoichiometry ZnO nanotube film. The XRD pattern has shown the wurtzite phase of ZnO and polycrystalline structure. Thickness and morphology of the films were explored from the cross sectional of the films and the surface using scanning electron microscopy (SEM) images. SEM images have confirmed the ZnO nanotubes and modifications of the morphology when adding Pb; the recorded images have proved that the diameter of the nanotubes is about 50 nm. However, AFM and SEM images have shown dense structure (without nanotubes) for non-doped ZnO film (Pb = 0 wt.%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data and materials as well as software application comply with field standards.

References

  1. Pearton SJ et al (2008) ZnO and related materials for sensors and light-emitting diodes. J Electron Mater 37(9):1426–1432

    Article  CAS  Google Scholar 

  2. Qin C et al (2017) Preparation of flower-like ZnO nanoparticles in a cellulose hydrogel microreactor. BioResources 12(2):3182–3191

    Article  CAS  Google Scholar 

  3. Zhang W et al (2014) Thin-film silicon solar cells on dry etched textured glass. Energy Procedia 44:151–159

    Article  CAS  Google Scholar 

  4. Pang HF et al (2013) Characterization of the surface acoustic wave devices based on ZnO/nanocrystalline diamond structures. Phys Status Solidi (a) 210(8):1575–1583

  5. Mukhamedshina D et al (2017) Fabrication and study of sol-gel ZnO films for use in Si-based heterojunction photovoltaic devices. Modern Electronic Materials 3(4):158–161

    Article  Google Scholar 

  6. Abdallah B, Al-Khawaja S (2015) Optical and electrical characterization of (002)-preferentially oriented n-ZnO/p-Si heterostructure. Acta Phys Pol, A 128(3):283–288

    Article  CAS  Google Scholar 

  7. Yakimova R et al (2012) ZnO materials and surface tailoring for biosensing. Front Biosci (Elite Ed) 4:254–278

    Article  Google Scholar 

  8. Al-Khawaja S et al (2015) Thickness effect on stress, structural, electrical and sensing properties of (0 0 2) preferentially oriented undoped ZnO thin films. Compos Interfaces 22(3):221–231

    Article  CAS  Google Scholar 

  9. Abdallah B, Jazmati AK, Refaai R (2017) Oxygen effect on structural and optical properties of ZnO thin films deposited by RF magnetron sputtering. Mater Res 20(3):607–612

    Article  CAS  Google Scholar 

  10. Jazmati AK, Abdallah B (2018) Optical and structural study of ZnO thin films deposited by RF magnetron sputtering at different thicknesses: A comparison with single crystal. Mater Res 21(3):e20170821

  11. Krebs FC, Gevorgyan SA, Alstrup J (2009) A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J Mater Chem 19(30):5442–5451

    Article  CAS  Google Scholar 

  12. Ovidiu O et al (2014) ZnO applications and challenges. Curr Org Chem 18(2):192–203

    Article  Google Scholar 

  13. Leonardi S (2017) Two-dimensional zinc oxide nanostructures for gas sensor applications. Chemosensors 5(2):17

    Article  Google Scholar 

  14. Shin SW et al (2011) Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Sol Energy Mater Sol Cells 95(12):3202–3206

    Article  CAS  Google Scholar 

  15. Ao D, Ichimura M (2012) UV irradiation effects on hydrogen sensors based on SnO2 thin films fabricated by the photochemical deposition. Solid-State Electron 69:1–3

    Article  CAS  Google Scholar 

  16. Chaisitsak S (2011) Nanocrystalline SnO2: F thin films for liquid petroleum gas sensors. Sensors 11(12):7127–7140

    Article  CAS  Google Scholar 

  17. Abdelkrim A et al (2016) Effect of solution concentration on the structural, optical and electrical properties of SnO2 thin films prepared by spray pyrolysis. Optik - International Journal for Light and Electron Optics 127(5):2653–2658

    Article  CAS  Google Scholar 

  18. Abdallah B, Jazmati AK, Kakhia M (2018) Physical, optical and sensing properties of sprayed zinc doped tin oxide films. Optik 158:1113–1122

    Article  CAS  Google Scholar 

  19. Alnama K, Abdallah B, Kanaan S (2017) Deposition of ZnS thin film by ultrasonic spray pyrolysis: effect of thickness on the crystallographic and electrical properties. Compos Interfaces 24(5):499–513

    Article  CAS  Google Scholar 

  20. Chebil W et al (2015) Comparison of ZnO thin films on different substrates obtained by sol-gel process and deposited by spin-coating technique. Indian journal of pure and applied physics 53:521–529

    Google Scholar 

  21. Inamdar SI, Rajpure KY (2014) High-performance metal–semiconductor–metal UV photodetector based on spray deposited ZnO thin films. J Alloy Compd 595:55–59

    Article  CAS  Google Scholar 

  22. Vishnoi S, Kumar R, Singh BP (2014) Effect of substrate on physical properties of pulse laser deposited ZnO thin films. Journal of intense pulsed lasers and applications in advanced physics 4(1):35–39

  23. Vishwakarma R (2015) Effect of substrate temperature on ZnS films prepared by thermal evaporation technique. J Theor Appl Phys 9(3):185–192

    Article  Google Scholar 

  24. Jeyachitra R, Senthilnathan V, Kathirvel D (2014) Optical, photoluminescence and electrical properties of vacuum evaporated ZnS thin films. Int J ChemTech Res 6(5):3152–3159

    Google Scholar 

  25. Al-Douri AAJ, Heavens OS (1983) The influence of deposition parameters on the optical properties and growth of ZnS films. Thin Solid Films 100(4):273–281

    Article  CAS  Google Scholar 

  26. Sinha T, Lilhare D, Khare A (2018) Effects of various parameters on structural and optical properties of CBD-grown ZnS thin films: A review. J Electron Mater 47(2):1730–1751

    Article  CAS  Google Scholar 

  27. Corrado C et al (2009) Synthesis, structural, and optical properties of stable ZnS:Cu, Cl nanocrystals†. J Phys Chem A 113:3830–3839

    Article  CAS  Google Scholar 

  28. Abdallah BM, Kakhia, Abou Shaker S (2016) Deposition of Na2WO4 films by ultrasonic spray pyrolysis: Effect of thickness on the crystallographic and sensing properties. Compos Interfaces 23(7):663–674

  29. Vaishnav VS, Patel PD, Patel NG (2005) Indium tin oxide thin film gas sensors for detection of ethanol vapours. Thin Solid Films 490(1):94–100

    Article  CAS  Google Scholar 

  30. Yu JH et al (2005) Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. J Am Chem Soc 127(15):5662–5670

    Article  CAS  Google Scholar 

  31. Bruno E et al (2017) Comparison of the sensing properties of ZnO nanowalls-based sensors toward low concentrations of CO and NO2. Chemosensors 5(3):20

    Article  Google Scholar 

  32. Hazra P, Singh SK, Jit S (2015) Impact of surface morphology of Si substrate on performance of Si/ZnO heterojunction devices grown by atomic layer deposition technique. J Vac Sci Technol A 33(1):01A114

    Article  Google Scholar 

  33. Dimitrov IG et al (2008) Al doped ZnO thin films for gas sensor application. J Phys 113:012044

  34. Ismail IM et al (2012) XPS and RBS investigation of TiNxOy films prepared by vacuum arc discharge. Nucl Instrum Methods Phys Res Sect B 271:102–106

    Article  CAS  Google Scholar 

  35. Fan DH et al (2007) Integration of ZnO nanotubes with well-ordered nanorods through two-step thermal evaporation approach. J Phys Chem C 111(26):9116–9121

    Article  CAS  Google Scholar 

  36. Moore DF (2006) Novel ZnS nanostructures: Synthesis, growth mechanism, and applications. Georgia Institute of Technology

  37. Kruis FE et al (1998) Preparation of size-classified PbS nanoparticles in the gas phase. Appl Phys Lett 73(4):547–549

    Article  CAS  Google Scholar 

  38. Nanda KK, Kruis FE, Fissan H (2002) Evaporation of free PbS nanoparticles: Evidence of the Kelvin effect. Phys Rev Lett 89(25):256103

    Article  CAS  Google Scholar 

  39. Xu CX et al (2008) Growth and spectral analysis of ZnO nanotubes. J Appl Phys 103(9):094303

    Article  Google Scholar 

  40. Abdallah B et al (2019) Synthesizing of ZnS and ZnO nanotubes films deposited by thermal evaporation: Morphological, structural and optical properties. Mater Res Express 6(11):115079

  41. The PONES (2015) Correction: Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass. PLoS One 10(5):e0126189

  42. Glowacka DM et al (2014) Development of a NbN deposition process for superconducting quantum sensors. Physics arXiv:1401.2276

  43. McGuire K et al (2002) Raman studies of semiconducting oxide nanobelts. J Nanosci Nanotechnol 2(5):499–502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Atomic Energy Commission of Syria and B. Abbas and M-D. Zidan for beneficial discussion.

Funding

This study was funded by Atomic Energy Commission of Syria (AECS).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, writing, and supervision: Bassam Abdallah; methodology: Mahmoud Kakhia; formal analysis and investigation: Mahmoud Kakhia and Asmahan Obaide. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bassam Abdallah.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, B., Kakhia, M. & Obaide, A. Morphological and Structural Studies of ZnO Nanotube Films Using Thermal Evaporation Technique. Plasmonics 16, 1549–1556 (2021). https://doi.org/10.1007/s11468-021-01420-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01420-x

Keywords

Navigation