Skip to main content
Log in

A third representation of Feynman–Kac–Itô formula with singular magnetic vector potential

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 17 April 2021

This article has been updated

Abstract

The Feynman–Kac–Itô (F–K–I) formula is a useful tool to probabilistically analyze the magnetic nonrelativistic Schrödinger semigroup. Hundertmark (Zur Theorie der magnetischen Schödingerhalbgruppe, Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Mathematik an der Ruhr–Universität Bochum, 1996) gave a second representation for F–K–I formula for more general singular magnetic vector potential A(x). The phase appearing in the integrand exponential consists of the stochastic integrals of the Lyons–Zheng decomposition type using the time reversal operator \(r_{T}\). In this note, we give a simpler third representation by using, instead of the operator \(r_{T}\), the backward Itô stochastic integral \(\int _0^t A(B(s))\cdot {\widehat{\mathrm{d}}}B(s)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press (2009)

  2. DeAngelis, G.F., Serva, M.: On the relativistic Feynman–Kac–Ito formula. J. Phys. A Math. Gen. 23, L965–L968 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  3. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov processes, 2nd ed., de Gruyter Stud. Math., vol. 19, de Gruyter, Berlin (2010)

  4. Hiroshima, F., Ichinose, T., Lörinczi, J.: Path integral representation for Schrödinger operators with Bernstein functions of the Laplacian. Rev. Math. Phys. 24, 1250013 (40 pages) (2012)

  5. Hundertmark, D.: Zur Theorie der magnetischen Schödingerhalbgruppe, Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Mathematik an der Ruhr–Universität Bochum (1996)

  6. Ichinose, T.: On three magnetic relativistic Schrödinger operators and imaginary-time path integrals. Lett. Math. Phys. 101, 323–339 (2012)

    Article  ADS  Google Scholar 

  7. Ichinose, T.: Magnetic relativistic Schrödinger operators and imaginary-time path integrals. In: Operator Theory: Advances and Applications, Mathematical Physics, Spectral Theory and Stochastic Analysis, 232, pp. 247–297. Springer (2013)

  8. Ichinose, T., Murayama, T.: The zero-mass limit problem for a relativistic spinless particle in an electromagnetic field. Proc. Japan Acad. 90(Ser A), 60–65 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland/Kodansha, Amsterdam (1989)

    MATH  Google Scholar 

  10. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1976)

    MATH  Google Scholar 

  11. Klenke, A.: Probability Theory: A Comprehensive Course. Springer, London (2008)

    Book  Google Scholar 

  12. Kuwae, K.: Stochastic calculus over symmetric Markov processes without time reversal. Ann. Probab. 38, 1532–1569 (2010)

    Article  MathSciNet  Google Scholar 

  13. McKean Jr., H.P.: Stochastic Integrals. Academic Press, New York (1969)

    MATH  Google Scholar 

  14. Murayama, T.: A probabilistic approach to the zero-mass limit problem for three magnetic relativistic Schrödinger heat semigroups. Tsukuba J. Math 40(1), 1–28 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ogawa, S.: On a Riemann definition of the stochastic integral (I), (II). Proc. Japan Acad. 46(153–157), 158–161 (1970)

    MathSciNet  MATH  Google Scholar 

  16. Ogawa, S.: The stochastic integral of noncausal type as an extension of the symmetric integrals. Japan J. Appl. Math. 2, 229–240 (1985)

    Article  MathSciNet  Google Scholar 

  17. Ogawa, S.: Noncausal Stochastic Calculus. Springer (2017)

  18. Simon, B.: Maximal and minimal Schrödinger forms. J. Oper. Theory 1, 37–47 (1979)

    MATH  Google Scholar 

  19. Simon, B.: Functional Integration and Quantum Physics, 2nd edn. Academic Press, New York (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

I am very grateful to Professor Takashi Ichinose and Professor Hidekazu Ito for a number of helpful discussions and warm encouragement during the preparation of this work. My hearty thanks are due to Professor Shigeyoshi Ogawa for useful and enlightening discussions about the subject and the backward Itô stochastic integral at the early stage of this work. I am much indebted to the anonymous referee for very careful reading of the manuscript, and valuable comments as well as suggestions to rectify some unsatisfactory arguments in Sect. 3 to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Murayama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murayama, T. A third representation of Feynman–Kac–Itô formula with singular magnetic vector potential. Lett Math Phys 111, 33 (2021). https://doi.org/10.1007/s11005-021-01376-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01376-3

Keywords

Mathematics Subject Classification

Navigation