Skip to main content
Log in

Evaluation of trace elements pollution in deposited dust on residential areas and agricultural lands around Pb/Zn mineral areas using modified pollution indices

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Dust deposited on residential and agricultural lands can have serious consequences for the ecosystem when toxic trace elements are present. This study aimed to assess the ecological risk of the trace elements found in the deposited dust around the Mehdi Abad Pb/Zn mine, Yazd, Iran, using several modified pollution indices. The dust samples were collected by the grid method and a Marble Dust Collector (MDCO) sampler to evaluate the concentration of thirty trace elements: nickel (Ni), lead (Pb), barium (Ba), beryllium (Be), chromium (Cr), copper (Cu), dysprosium (Dy), lanthanum (La), lithium (Li), niobium (Nb), tin (Sn), neodymium (Nd), praseodymium (Pr), rubidium (Rb), Ferrum (Fe), sulfur (S), selenium (Se), strontium (Sr), tantalum (Ta), terbium (Tb), zirconium (Zr), tellurium (Te), thorium (Th), titanium (Ti), uranium (U), vanadium (V), yttrium (Y), ytterbium (Yb), thulium (Tm), and cobalt (Co). This study employed multivariate statistical techniques, including Hierarchical cluster analysis (HCA) and the IDW interpolation technique, as well as modified pollution indices such as Enrichment Factor (EF), Modified Pollution Index (MPI), Modified Potential Ecological Risk Index (MRI), and Modified Hazard Quotient (mHQ). All the statistical data analyses were performed via SPSS Statistics, version 22.00. The HCA results showed that all of these trace elements, except Fe, form a group and had similar behavior. The average levels of all elements in the dust samples except for Cr, S, Sr, Ta, Tb, and Te exceeded the background value. The results confirmed that both anthropogenic activities and natural factors were responsible for the trace elements found in the dust. The average EF value for Pb (43.26) indicated its extremely high enrichment in the study area. The MPI, mHQ, and MRI results showed that 33%, 100%, and 33.33% of the dust samples were in the heavily polluted, extreme severity, and high risk categories, respectively. The IDW analysis results revealed that the highest value of the MRI and mHQ indices was in agricultural lands and residential areas; the predominant wind direction also played a role in transferring the elements from the mine to these areas. In general, the results indicated that mining activities increased the ecological risk in Mehdi Abad due to the presence of trace elements, especially Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Roy S, Gupta SK, Prakash J, Habib G, Baudh K, Nasr M. Ecological and human health risk assessment of heavy metal contamination in road dust in the National Capital Territory (NCT) of Delhi, India. Environ Sci Pollut Res Int. 2019;26(29):30413–25. https://doi.org/10.1007/s11356-019-06216-5.

    Article  CAS  Google Scholar 

  2. Cai K, Li C, Na S. Spatial distribution, pollution source, and health risk assessment of heavy metals in atmospheric depositions: a case study from the sustainable city of Shijiazhuang, China. Atmosphere. 2019;10(4):222. https://doi.org/10.3390/atmos10040222.

    Article  CAS  Google Scholar 

  3. Fashola MO, Ngole-Jeme VM, Babalola OO. Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health. 2016;13(11):1047. https://doi.org/10.3390/ijerph13111047.

    Article  CAS  Google Scholar 

  4. Entwistle JA, Hursthouse AS, Reis PAM, Stewart AG. Metalliferous mine dust: human health impacts and the potential determinants of disease in mining communities. Curr Pollut Rep. 2019;5(3):67–83. https://doi.org/10.1007/s40726-019-00108-5.

    Article  CAS  Google Scholar 

  5. Kamani H, Mahvi A, Seyedsalehi M, Jaafari J, Hoseini M, Safari G, et al. Contamination and ecological risk assessment of heavy metals in street dust of Tehran, Iran. Int J Environ Sci Technol. 2017;14(12):2675–82. https://doi.org/10.1007/s13762-017-1327-x.

    Article  CAS  Google Scholar 

  6. Alegre DAG, Peroni RL, Aquino ER. The impact of haulroad geometric parameters on open pit mine strip ratio. REM-Int Eng J. 2019;72(1):25–31. https://doi.org/10.1590/0370-44672018720136.

    Article  Google Scholar 

  7. Obiora SC, Chukwu A, Toteu SF, Davies TC. Assessment of heavy metal contamination in soils around lead (Pb)-zinc (Zn) mining areas in Enyigba, southeastern Nigeria. J Geol Soc India. 2016;87(4):453–62. https://doi.org/10.1007/s12594-016-0413-x.

    Article  CAS  Google Scholar 

  8. Baghaie AH, Aghili F. Investigation of heavy metals concentration in soil around a PbZn mine and ecological risk assessment. Environ Health Eng Manag J. 2019;6(3):151–6. https://doi.org/10.15171/EHEM.2019.17.

    Article  CAS  Google Scholar 

  9. Bu Q, Li Q, Zhang H, Cao H, Gong W, Zhang X, et al. Concentrations, spatial distributions, and sources of heavy metals in surface soils of the coal Mining City Wuhai, China. J Cwhem. 2020;2020:10–1. https://doi.org/10.1155/2020/4705954.

    Article  CAS  Google Scholar 

  10. Li H, Xu W, Dai M, Wang Z, Dong X, Fang T. Assessing heavy metal pollution in paddy soil from coal mining area, Anhui, China. Environ Monitor Assess. 2019;191(8):518. https://doi.org/10.1007/s10661-019-7659-x.

    Article  CAS  Google Scholar 

  11. Jahromi MA, Jamshidi-Zanjani A, Darban AK. Heavy metal pollution and human health risk assessment for exposure to surface soil of mining area: a comprehensive study. Environ Earth Sci. 2020;79(14):1–18. https://doi.org/10.1007/s12665-020-09110-3.

    Article  CAS  Google Scholar 

  12. Kolawole TO, Olatunji AS, Jimoh MT, Fajemila OT. Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in southwestern Nigeria. J Health Pollut. 2018;8(19):180906. https://doi.org/10.5696/2156-9614-8.19.

    Article  Google Scholar 

  13. Mokhtarzadeh Z, Keshavarzi B, Moore F, Marsan FA, Padoan E. Potentially toxic elements in the Middle East oldest oil refinery zone soils: source apportionment, speciation, bioaccessibility and human health risk assessment. Environ Sci Pollut Res Int. 2020;27:40573–91. https://doi.org/10.1007/s11356-020-09895-7.

    Article  CAS  Google Scholar 

  14. Ali Z, Malik R, Shinwari Z, Qadir A. Enrichment, risk assessment, and statistical apportionment of heavy metals in tannery-affected areas. Int J Environ Sci Technol. 2015;12(2):537–50. https://doi.org/10.1007/s13762-013-0428-4.

    Article  CAS  Google Scholar 

  15. Keshavarzi A, Kumar V. Spatial distribution and potential ecological risk assessment of heavy metals in agricultural soils of northeastern Iran. Geol Ecol Landsc. 2020;4(2):87–103. https://doi.org/10.1080/24749508.2019.1587588.

    Article  Google Scholar 

  16. Rayhan Khan M, Hosna Ara M, Kumar DP. Assessment of heavy metals concentrations in the soil of Mongla industrial area, Bangladesh. Environ Health Eng Manag J. 2019;6(3):191–202. https://doi.org/10.15171/EHEM.2019.22.

    Article  Google Scholar 

  17. Yuan Q, Wang P, Wang C, Chen J, Wang X, Liu S, et al. Metals and metalloids distribution, source identification, and ecological risks in riverbed sediments of the Jinsha River, China. J Geochem Explor. 2019;205:106334. https://doi.org/10.1016/j.gexplo.2019.

    Article  CAS  Google Scholar 

  18. Huang S, Yuan C, Li Q, Yang Y, Tang C, Ouyang K, et al. Distribution and risk assessment of heavy metals in soils from a typical Pb-Zn mining area. Pol J Environ Stud. 2017;26(3):1105–12. https://doi.org/10.15244/pjoes/68424.

    Article  CAS  Google Scholar 

  19. Rajabi A, Rastad E, Canet C. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: geotectonic setting and data integration for future mineral exploration. Int Geol Rev. 2012;54(14):1649–72. https://doi.org/10.1080/00206814.2012.659110.

    Article  Google Scholar 

  20. Santos-Francés F, Martínez-Graña A, Alonso Rojo P, García SA. Geochemical background and baseline values determination and spatial distribution of heavy metal pollution in soils of the Andes mountain range (Cajamarca-Huancavelica, Peru). Int J Environ Res Public Health. 2017;14(8):859. https://doi.org/10.3390/ijerph14080859.

    Article  CAS  Google Scholar 

  21. Y-h L, Wan B, Xue D-s. Sample Digestion and Combined Preconcentration Methods for the Determination of Ultra-Low Gold Levels in Rocks. Molecules. 2019;24(9):1778. https://doi.org/10.3390/molecules24091778.

    Article  CAS  Google Scholar 

  22. Konieczka P. Validation and regulatory issues for sample preparation in: comprehensive sampling and sample preparation. Chem Mol Sci Chem Eng. 2012;2:699–711.

    Google Scholar 

  23. Taleuzzaman M. Limit of blank (LOB), limit of detection (LOD), and limit of quantification (LOQ). Org Med Chem. 2018;7(5):555722.

    Google Scholar 

  24. Brady JP, Ayoko GA, Martens WN, Goonetilleke A. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environ Monit Assess. 2015;187(5):306. https://doi.org/10.1007/s10661-015-4563-x.

    Article  Google Scholar 

  25. Pandey B, Agrawal M, Singh S. Ecological risk assessment of soil contamination by trace elements around coal mining area. J Soils Sediments. 2016;16(1):159–68. https://doi.org/10.1007/s11368-015-1173-8.

    Article  CAS  Google Scholar 

  26. Ma L, Sun J, Yang Z, Wang L. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China. Environ Monit Assess. 2015;187(12):731. https://doi.org/10.1007/s10661-015-4966-8.

    Article  CAS  Google Scholar 

  27. Duodu GO, Goonetilleke A, Ayoko GA. Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environ Pollut. 2016;219:1077–91. https://doi.org/10.1016/j.envpol.2016.09.008.

    Article  CAS  Google Scholar 

  28. Shojaee Barjoee S, Azimzadeh H, Mosleh AA. Evaluation of Individual and Integrated Pollution Indices of Some Heavy Metals in Atmospheric Dust Deposition Around Khak-e-chini, Tile and Ceramic, Sand and Gravel and Glass in Ardakan County Industries in Winter 2018. J Environ Health Eng. 2020;7(3):314–37. https://doi.org/10.29252/jehe.7.3.314.

    Article  Google Scholar 

  29. Bern CR, Walton-Day K, Naftz DL. Improved enrichment factor calculations through principal component analysis: examples from soils near breccia pipe uranium mines, Arizona, USA. Environ Pollut. 2019;248:90–100. https://doi.org/10.1016/j.envpol.2019.01.122.

    Article  CAS  Google Scholar 

  30. Kang Z, Wang S, Qin J, Wu R, Li H. Pollution characteristics and ecological risk assessment of heavy metals in paddy fields of Fujian province, China. Sci Rep. 2020;10(1):1–10. https://doi.org/10.1038/s41598-020-69165-x.

    Article  CAS  Google Scholar 

  31. Nambiar R, Shah C, Kumar J, Shrivastav PS, Bhushan R. Assessment of contaminants in the northwestern Bay of Bengal. Environ Sci Pollut Res. 2020;27(27):34090–8. https://doi.org/10.1007/s11356-020-09576-5.

    Article  CAS  Google Scholar 

  32. Bay Ö, Akarsu T, Öztura E. Ecological risk assessment of surface sediments of Çardak lagoon along a human disturbance gradient. Environ Monit Assess. 2020;192:359. https://doi.org/10.1007/s10661-020-08336-9.

    Article  CAS  Google Scholar 

  33. Rodríguez-Espinosa P, Shruti V, Jonathan M, Martinez-Tavera E. Metal concentrations and their potential ecological risks in fluvial sediments of Atoyac River basin, Central Mexico: Volcanic and anthropogenic influences. Ecotoxicol Environ Saf. 2018;148:1020–33. https://doi.org/10.1016/j.ecoenv.2017.11.068.

    Article  CAS  Google Scholar 

  34. Benson NU, Adedapo AE, Fred-Ahmadu OH, Williams AB, Udosen ED, Ayejuyo OO, et al. A new method for assessment of sediment-associated contamination risks using multivariate statistical approach. MethodsX. 2018;5:268–76. https://doi.org/10.1016/j.mex.2018.03.005.

    Article  Google Scholar 

  35. Ustaoğlu F, Islam MS. Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecol Indic. 2020;113:106237. https://doi.org/10.1016/j.ecolind.2020.

    Article  Google Scholar 

  36. Eker ÇS. Distinct contamination indices for evaluating potentially toxic element levels in stream sediments: a case study of the Harşit stream (NE Turkey). Arab J Geosci. 2020;13(22):1–18. https://doi.org/10.1007/s12517-020-06178-w.

    Article  CAS  Google Scholar 

  37. Mortazavi S, Hatami-Manesh M, Joudaki F. Evaluation of toxicity and ecological risk assessment of heavy metals in surface sediments of Sezar River, Lorestan Province. Iran J Health Environ. 2019;11(4):487–504.

    Google Scholar 

  38. Xie Y, Chen T-b, Lei M, Yang J, Guo Q-j, Song B, et al. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis. Chemosphere. 2011;82(3):468–76. https://doi.org/10.1016/j.chemosphere.2010.09.053.

    Article  CAS  Google Scholar 

  39. Antoniadis V, Shaheen SM, Levizou E, Shahid M, Niazi NK, Vithanage M, et al. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: are they protective concerning health risk assessment?-a review. Environ Int. 2019;127:819–47. https://doi.org/10.1016/j.envint.2019.03.039.

    Article  CAS  Google Scholar 

  40. Zhang S, Liu Y, Yang Y, Ni X, Arif M, Charles W, et al. Trace elements in soils of a typical Industrial District in Ningxia, Northwest China: pollution, source, and risk evaluation. Sustain. 2020;12(5):1868. https://doi.org/10.3390/su12051868.

    Article  CAS  Google Scholar 

  41. Maghfouri S, Hosseinzadeh MR, Rajabi A, Choulet F. A review of major non-sulfide zinc deposits in Iran. Geosci Front. 2018;9(1):249–72. https://doi.org/10.1016/j.gsf.2017.04.003.

    Article  CAS  Google Scholar 

  42. Ghasemi M, Momenzadeh M, Yaghubpur A, Mirshokraei AA. Mineralogy and textural studies of Mehdiabad zinc-Lead deposit-Yazd, Central Iran. Mineral Explor Sustain Dev. 2008;16(3):404–389.

    Google Scholar 

  43. Maghfouri S, Hosseinzadeh M, RAJABI R, Azimzadeh A. Facies analysis and stratighraphy position of carbonate-clastic hosted Zn-Pb-Ba mineralization horizons in the early cretaceous sedimentary sequence, Southern Yazd Basin. J Geosci. 2017;26(102):233–46.

    Google Scholar 

  44. Kianpor M, Payandeh K, Ghanavati N. Environmental assessment of some heavy metals pollution in street dust in the industrial areas of Ahvaz. Jundishapur J Health Sci. 2019;11(3):e87212. https://doi.org/10.5812/jjhs.

    Article  Google Scholar 

  45. Rout TK, Masto R, Ram L, George J, Padhy PK. Assessment of human health risks from heavy metals in outdoor dust samples in a coal mining area. Environ Geochem Health. 2013;35(3):347–56. https://doi.org/10.1007/s10653-012-9499-2.

    Article  CAS  Google Scholar 

  46. Hu J, Lin B, Yuan M, Lao Z, Wu K, Zeng Y, et al. Trace metal pollution and ecological risk assessment in agricultural soil in Dexing Pb/Zn mining area, China. Environ Geochem Health. 2019;41(2):967–80. https://doi.org/10.1007/s10653-018-0193-x.

    Article  CAS  Google Scholar 

  47. Keshavarzi A, Kumar V. Ecological risk assessment and source apportionment of heavy metal contamination in agricultural soils of northeastern Iran. Int J Environ Health Res. 2019;29(5):544–60. https://doi.org/10.1080/09603123.2018.1555638.

    Article  CAS  Google Scholar 

  48. Hadzi GY, Ayoko GA, Essumang DK, Osae SK. Contamination impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana. Environ Geochem Health. 2019;41(6):2821–43. https://doi.org/10.1007/s10653-019-00332-4.

    Article  CAS  Google Scholar 

  49. Zhu H-n, X-z Y, G-m Z, Jiang M, Liang J, Zhang C, et al. Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Trans Nonferrous Metals Soc China. 2012;22(6):1470–7. https://doi.org/10.1016/S003-6326(11)61343-5.

    Article  CAS  Google Scholar 

  50. Traczyk P, Gruszecka-Kosowska A. The condition of air pollution in Kraków, Poland, in 2005–2020, with health risk assessment. Int J Environ Res Public Health. 2020;17(17):6063. https://doi.org/10.3390/ijerph17176063.

    Article  CAS  Google Scholar 

  51. Benson NU, Adedapo AE, Fred-Ahmadu OH, Williams AB, Udosen ED, Ayejuyo OO, et al. New ecological risk indices for evaluating heavy metals contamination in aquatic sediment: a case study of the Gulf of Guinea. Reg Stud Mar Sci. 2018;18:44–56. https://doi.org/10.1016/j.rsma.2018.01.004.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank office of Health, Safety and Environment (HSE) of Mehdi Abad Pb/Zn mine for support of this research project.

Code availability

Not applicable.

Funding

All sources of this study were supported by the authors.

Author information

Authors and Affiliations

Authors

Contributions

SSB work concept, conducted the data collection, ecological risk calculations, preparation of inverse distance weighting maps of mHQ and MRI, manuscript writing, proofreading, results and discussion, tables and figures. SZMA, MRE, VTV and MN Analysis (ICP-MS), ecological risk calculations, results and discussion, implementation of HCA, tables, figures, proofreading and references. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Saeed Shojaee Barjoee.

Ethics declarations

Conflicts of interest/competing interests

There are no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barjoee, S.S., Abadi, S.Z.M., Elmi, M.R. et al. Evaluation of trace elements pollution in deposited dust on residential areas and agricultural lands around Pb/Zn mineral areas using modified pollution indices. J Environ Health Sci Engineer 19, 753–769 (2021). https://doi.org/10.1007/s40201-021-00643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00643-8

Keywords

Navigation