Skip to main content
Log in

Gyrotropy and magnetic fluid dependences of magneto-optical properties in YIG-magnetic photonic crystal fiber

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, a kind of magnetic photonic crystal fiber (MPCF) design based on yttrium iron garnet (YIG) structure filled with magnetic fluid (MF) is presented. In order to improve the magneto-optical (MO) properties of isolator devices, a numerical study has been developed to investigate the non-reciprocal TE-TM mode conversion. This technique consists in producing, under the influence of a magnetic field parallel to the direction of propagation, a coupling between the modes. The influence of gyrotropy and MF infiltration at different magnetic nanoparticle volume fraction concentrations is investigated. The results revealed that the mode conversion efficiency (Rm) increases with the increase of the MF concentration, while modal birefringence (∆n) is inversely proportional to its increase. Thus, the higher concentration provides the best results. For MF concentration and gyrotropy equal respectively to 1.75% and 0.0125, Rm is improved to over 93%, and ∆n is reduced to close to 10–6. Whereas, Rm decreases to 89.59 and ∆n increases to 6 × 10–6 for MF concentration equal to 0.25%. From these results, it can be seen that this MPCF filled with MF concentration equal to 1.75% is well suited to the design of MO isolators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shoji, Y., Mizumoto, T.: Magneto-optical non-reciprocal devices in silicon photonics. Sci. Technol. Adv. Mater. 15, 014605 (2014)

    Article  Google Scholar 

  2. Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P.: Applications of magneto-optical waveguides in integrated optics : review. J. Opt. Soc. Am. B 22, 240 (2005)

    Article  Google Scholar 

  3. P. Dulal, T. E. Gage, A. D. Block, E. Cofell, D. C. Hutchings, and B. J. H. Stadler, Sputter-deposited seedlayer-free cerium-doped terbium iron garnets for SOI waveguide isolators, IEEE Photonics Conf. IPC (2016) 773.

  4. Srinivasan, K., Stadler, B.J.H.: Magneto-optical materials and designs for integrated TE- and TM-mode planar waveguide isolators : a review [Invited ]. Opt. Mater. Express 8, 3307 (2018)

    Article  Google Scholar 

  5. Liu, J., Wang, S., Deng, S., Wang, Y., Zhang, J.: Polarization research of YIG based two-dimensional magneto photonic crystals. Opt. Commun. 402, 319 (2017)

    Article  Google Scholar 

  6. Khokhlov, N.E., et al.: Photonic crystals with plasmonic patterns: Novel type of the heterostructures for enhanced magneto-optical activity. J. Phys. D. Appl. Phys. 48, 095001 (2015)

    Article  Google Scholar 

  7. Akhtar, M.N., et al.: Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method. J. Magn. Magn. Mater. 401, 425 (2015)

    Article  Google Scholar 

  8. Tu, S., Białek, M., Zhang, Y., Zhao, W., Yu, H., Ansermet, J.P.: Bolometric detection of ferromagnetic resonance in YIG slab. J. Magn. Magn. Mater. 439, 53 (2017)

    Article  Google Scholar 

  9. Pan, L., Zhang, X., Wang, J., Liu, Q.: Structural and magnetic properties of electrospun yttrium iron garnet (YIG) nanofibers. Ceram. Int. 43, 1 (2017)

    Article  Google Scholar 

  10. Saker, K., Bouchemat, T., Lahoubi, M., Bouchemat, M.: Enhancement of magneto-optical properties in magnetic photonic crystal slab waveguide based on yttrium iron garnet. J. Phys. Conf. Ser. 1310, 012019 (2019)

    Article  Google Scholar 

  11. Gevorgyan, A.H.: On some optical properties of magnetic photonic crystals. J. Mod. Opt. 65, 2160 (2018)

    Article  MathSciNet  Google Scholar 

  12. Dong, Y., et al.: Magnetic field and temperature sensor based on D-shaped fiber modal interferometer and magnetic fluid. Opt. Laser Technol. 107, 169 (2018)

    Article  Google Scholar 

  13. Saker, K., Bouchemat, T., Lahoubi, M., Bouchemat, M., Pu, S.: Magnetic field sensor based on a magnetic-fluid-infiltrated photonic crystal L4 nanocavity and broadband W1 waveguide. J. Comput. Electron. 18, 619 (2019)

    Article  Google Scholar 

  14. Pu, S., Mao, L., Yao, T., Gu, J., Lahoubi, M., Zeng, X.: Microfiber coupling structures for magnetic field sensing with enhanced sensitivity. IEEE Sens. J. 17, 5857 (2017)

    Article  Google Scholar 

  15. Pu, S., Dong, S., Huang, J.: Tunable slow light based on magnetic-fluid-infiltrated photonic crystal waveguides. J. Opt. 16, 045102 (2014)

    Article  Google Scholar 

  16. Choueikani, F., et al.: Magneto-optical waveguides made of cobalt ferrite nanoparticles embedded in silica/zirconia organic-inorganic matrix. Appl. Phys. Lett. 94, 51113 (2009)

    Article  Google Scholar 

  17. Wolfe, R., Lieberman, R.A., Fratello, V.J., Scotti, R.E., Kopylov, N.: Etch-tuned ridged waveguide magneto-optic isolator. Appl. Phys. Lett. 56, 426 (1990)

    Article  Google Scholar 

  18. Dulal, P., et al.: Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality. ACS Photonics 3, 1818 (2016)

    Article  Google Scholar 

  19. Alcantara, L.D.S., Teixeira, F.L., Member, S., César, A.C., Borges, B.V.: A new full-vectorial FD-BPM scheme : application to the analysis of magnetooptic and nonlinear saturable media. J. Light. Technol. 23, 2579 (2005)

    Article  Google Scholar 

  20. Choueikani, F., et al.: Low birefringent magneto-optical waveguides fabricated via organic-inorganic sol-gel process. Eur. Phys. J. Appl. Phys. 47, 30401 (2009)

    Article  Google Scholar 

  21. Otmani, H., Bouchemat, M., Bouchemat, T., Lahoubi, M., Wang, W., Pu, S.: Nonreciprocal TE – TM mode conversion based on photonic crystal fiber of air holes filled with magnetic fluid into a terbium gallium garnet fiber. IEEE Trans. Magn. 51, 4004604 (2015)

    Article  Google Scholar 

  22. Mondal, S.K., Stadler, B.J.H.: Novel designs for integrating YIG / air photonic crystal slab polarizers with waveguide Faraday rotators. IEEE Photonics Technol. Lett. 17, 127 (2005)

    Article  Google Scholar 

  23. Otmani, H., Bouchemat, M., Bouchemat, T., Lahoubi, M., Pu, S., Deghdak, R.: Magneto-optical properties of magnetic photonic crystal fiber of terbium gallium garnet filled with magnetic fluid. Photonics Nanostruct. 22, 24 (2016)

    Article  Google Scholar 

  24. Pu, S., Bai, X., Wang, L.: Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids. J. Magn. Magn. Mater. 323, 2866 (2011)

    Article  Google Scholar 

  25. Horng, H.E., Hong, C., Yang, S.Y., Yang, H.C.: Designing the refractive indices by using magnetic fluids. Appl. Phys. Lett. 82, 2434 (2003)

    Article  Google Scholar 

  26. Zhao, Y., Wu, D., Lv, R.-Q., Ying, Y.: Tunable characteristics and mechanism analysis of the magnetic fluid refractive index with applied magnetic field. IEEE Trans. Magn. 50, 4600205 (2014)

    Google Scholar 

  27. Hong, C.Y., Yang, S.Y., Horng, H.E., Yang, H.C.: Control parameters for the tunable refractive index of magnetic fluid films. J. Appl. Phys. 94, 3849 (2003)

    Article  Google Scholar 

  28. Chen, Y.F., Yang, S.Y., Tse, W.S., Horng, H.E., Hong, C.Y., Yang, H.C.: Thermal effect on the field-dependent refractive index of the magnetic fluid film. Appl. Phys. Lett. 82, 3481 (2003)

    Article  Google Scholar 

  29. Yusuf, N.A., Abu-Aljarayesh, I., Rousan, A.A., El-Ghanem, H.M.: On the concentration dependence of faraday rotation in magnetic fluids. IEEE Trans. Magn. 26, 2852 (1990)

    Article  Google Scholar 

  30. Zvezdin, A.K., Kotov, V.A.: Modern Magnetooptics and Magnetooptical Materials. IOP Publis, London (1997)

    Book  Google Scholar 

  31. Saker, K., Bouchemat, T., Lahoubi, M., Bouchemat, M., Pu, S.: Design of non-reciprocal device based on magnetic photonic crystal fiber with enhanced birefringence. Microelectronics J. 100, 104786 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

A part of this work was presented at the poster section of the Fourth International Conference on Energy, Materials, Applied Energetics and Pollution. ICEMAEP2018, April29-30, 2018, Constantine, Algeria. Authors (K Saker, T Bouchemat, M Lahoubi, M Bouchemat). It was supported in part by the Algerian Ministry of Higher Education and Scientific Research and partly by a joined cooperation project between the Laboratory L.P.S. of the Department of Physics, Badji-Mokhtar Annaba University, Annaba, Algeria and the Photonics Research Laboratory of the College of Science, University of Shanghai for Science and Technology, Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadidja Saker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saker, K., Lahoubi, M. & Pu, S. Gyrotropy and magnetic fluid dependences of magneto-optical properties in YIG-magnetic photonic crystal fiber. J Comput Electron 20, 1326–1331 (2021). https://doi.org/10.1007/s10825-021-01679-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01679-7

Keywords

Navigation