Skip to main content
Log in

Optimization of different structural parameters of GeSn/SiGeSn Quantum Well Infrared Photodetectors (QWIPs) for low dark current and high responsivity

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Dark current and responsivity are two important parameters of quantum well infrared photodetectors (QWIPs). An optimization approach is applied herein to achieve low dark current along with high responsivity for a GeSn/SiGeSn QWIP. The dark current is reduced by varying different physical parameters of well and barrier, operating temperature and bias voltage of the QWIP. To optimize the QWIP, the detectivity is calculated. The results show that the optimally designed GeSn/SiGeSn QWIP can achieve a low dark current of 2.35 pA at 2 V with a peak responsivity of 1.24 A/W at 4.3 µm and a high detectivity of 3.47 × 1012 cm · Hz1/2 W−1 at 2 V and 77 K. Finally, the frequency response of the optimally designed GeSn/SiGeSn QWIP device is estimated. The theoretically predicted higher detectivity with respect to previously reported SiGe/Si QWIPs and GeSn/SiGeSn interband QWIPs indicates a promising future for GeSn/SiGeSn intersubband QWIPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gunapala, S.D., Park, J.S., Sarusi, G., True-Lon, L., Liu, J.K., Maker, P.D.: 15 µm 128 × 128 GaAs/AlxGa1−xAs quantum well infrared photodetector focal plane array camera. IEEE Trans. Electron Dev. 44, 45–50 (1997)

    Article  Google Scholar 

  2. Gunapala, S.D., Bandara, S.V., Singh, A., Liu, J.K., Rafol, B.: 640 × 486 long wavelength two color GaAs/AlxGa1−xAs quantum well infrared photodetector (QWIP) focal plane array camera. IEEE Trans. Electron Dev. 47, 963–971 (2000)

    Article  Google Scholar 

  3. Rogalski, A.: Infrared detectors: an overview. Infrared Phys. Tech. 43, 187–202 (2002)

    Article  Google Scholar 

  4. Gueriaux, V., de Brierel’Isle, N., Berurier, A., Odile, H., Manissadjian, A., Facoetti, H., Marcadet, X., Carras, M., Trinite, V., Nedelcu, A.: Quantum well infrared photodetectors: present and future. Opt. Eng. 50, 061013 (2011)

    Article  Google Scholar 

  5. Downs, C., Vandervelde, T.E.: Progress in infrared photodetectors Since 2000. Sensors 13, 5054–5098 (2013)

    Article  Google Scholar 

  6. Levine, B.F., Zussman, A., Gunapala, S.D., Asom, M.T., Kuo, J.M., Hobson, W.S.: Photoexcited escape probability, optical gain and noise in quantum well infrared photodetectors. J. Appl. Phys. 72, 4429–4443 (1992)

    Article  Google Scholar 

  7. Levine, B.F.: Device physics of quantum well infrared photodetectors. Semicond. Sci. Technol. 8, S400–S405 (1993)

    Article  Google Scholar 

  8. Ryzhii, V.: Characteristics of quantum well infrared photodetectors. J. Appl. Phys. 81, 6442–6448 (1997)

    Article  Google Scholar 

  9. Gunapala, S.D., Bandara, S.V., Liu, J.K., Mumolo, J.M., Rafol, S.B., Ting, D.Z., Soibel, A., Hill, C.: Quantum well infrared photodetector technology and applications. IEEE J. Sel. Top. Quantum Electron. 20, 3802312 (2014)

    Article  Google Scholar 

  10. Ang, K.-W., Liow, T.-Y. et al.: Silicon photonics technologies for monolithic electronic-photonic integrated circuit (EPIC) applications: current progress and future outlook. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), pp. 1–4 (2009)

  11. Lo, G.Q., Ang, K.W., Liow, T.Y., Fang, Q., Zhang, J., Zhu, S.Y., Song, J.F., Xiong, Y.Z., Ren, F.F., Yu, M.B., Kwong, D.-L.: Silicon photonics technologies for monolithic electronic-photonic integrated circuit. ECS Trans. 28, 3–11 (2010)

    Article  Google Scholar 

  12. Soref, R.: Mid-infrared photonics in silicon and germanium. Nat. Photon. 4, 495–497 (2010)

    Article  Google Scholar 

  13. Roelkens, G.: Silicon-based photonic integration beyond the telecommunication wavelength range. IEEE J. Sel. Top. Quantum Electron. 20, 8201511 (2014)

    Article  Google Scholar 

  14. Kruck, P., Helm, M., Fromherz, T., Bauer, G.: Medium-wavelength, normal incidence, p-type Si/SiGe quantum well infrared photodetector with background limited performance up to 85 K. Appl. Phys. Lett. 69, 3372–3374 (1996)

    Article  Google Scholar 

  15. Gadir, M.A., Harrison, P., Soref, R.A.: Responsivity of quantum well infrared photodetector at terahertz detection wavelength. J. Appl. Phys. 91, 5820–5825 (2002)

    Article  Google Scholar 

  16. Rauter, P., Fromherz, T., Falub, C., Grutzmacher, D., Bauer, G.: SiGe quantum well infrared photodetectors on pseudosubstrate. Appl. Phys. Lett. 94, 08115 (2009)

    Article  Google Scholar 

  17. Durmaz, H., Sookchoo, P., Cui, X., Jacobson, R.B., Savage, D.E., Lagally, M.G., Paiella, R.: SiGe nanomembrane quantum-well infrared photodetectors. ACS Photon. 3, 1978–1985 (2016)

    Article  Google Scholar 

  18. Roucka, R., Xie, J., Kuovetakis, J., Mathews, J., D’Costa, V., Menendez, J., Tolle, J., Yu, S.Q.: Ge1ySny photoconductor structures at 1.55 µm: from advanced materials to prototype devices. J. Vac. Sci. Technol. B 26, 1952–1959 (2008)

    Article  Google Scholar 

  19. Gupta, J.P., Bhargava, N., Kim, S., Adam, T., Kolodzey, J.: Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy. Appl. Phys. Lett. 102, 251117 (2013)

    Article  Google Scholar 

  20. Dutt, B., Lin, H., Sukhdeo, D.S., Vulovic, B.M., Gupta, S., Nam, D., Saraswat, K.C., Harris, J.S., Jr.: Theoretical analysis of GeSn alloys as a gain medium for a Si-compatible laser. IEEE J. Sel. Top. Quantum Electron. 19, 1502706 (2013)

    Article  Google Scholar 

  21. Dong, Y., Wang, W., Xu, X., Gong, X., Lei, D., Zhou, Q., Xu, Z., KhaiLoke, W., Yoon, S.-F., Liang, G., Yeo, Y.-C.: Germanium-tin on Si avalanche photodiode: device design and technology demonstration. IEEE Trans. Electron Dev. 62, 128–135 (2015)

    Article  Google Scholar 

  22. Ghosh, S., Mukhopadhyay, B., Chang, G.-E.: Design and analysis of GeSn-based resonant-cavity-enhanced photodetectors for optical communication applications. IEEE Sens. J. 20, 7801–7809 (2020)

    Article  Google Scholar 

  23. Chang, G.-E., Chang, S.W., Chuang, S.L.: Strain-balanced GezSn1−z–SixGeySn1−xy multiple quantum-well lasers. IEEE J. Quantum Electron. 46, 1813–1820 (2010)

    Article  Google Scholar 

  24. Mukhopadhyay, B., Sen, G., De, S., Basu, R., Chakraborty, V., Basu, P.K.: Calculated characteristics of a transistor laser using alloys of Gr-IV elements. Phys. Status Solidi B 255, 1800117 (2018)

    Article  Google Scholar 

  25. Ghosh, S., Mukhopadhyay, B., Sen, G.: Performance enhancement of GeSn transistor laser with symmetric and asymmetric multiple quantum well in the base. Semiconductors 54, 77–84 (2020)

    Article  Google Scholar 

  26. Ghosh, S., Lin, K.-C., Tsai, C.-H., Kumar, H., Chen, Q., Zhang, L., Son, B., Tan, C.S., Kim, M., Mukhopadhyay, B., Chang, G.-E.: Metal-semiconductor-metal GeSn photodetectors on silicon for short-wave infrared applications. Micromachines 11(1–12), 795 (2020)

    Article  Google Scholar 

  27. Chang, G.-E., Basu, R., Mukhopadhyay, B., Basu, P.K.: Design and modeling of GeSn-based heterojunction phototransistors for communication applications. IEEE J. Sel. Top. Quantum Electron. 22, 8200409 (2016)

    Article  Google Scholar 

  28. Ghosh, S., Mukhopadhyay, B., Sen, G., Basu, P.K.: Study of Si-Ge-Sn based heterobipolar phototransistor (HPT) exploiting quantum confined stark effect and Franz Keldysh effect with and without resonant cavity. Physica E 106, 62–67 (2019)

    Article  Google Scholar 

  29. Ghosh, S., Mukhopadhyay, B., Sen, G., Basu, P.K.: Analysis of some important parameters of Si-Ge-Sn RCE-HPT exploiting QCSE and FKE. URSI RCRS, IIT (BHU), Varanasi, India, 12–14 February (2020)

  30. Pareek, P., Das, M.K.: Theoretical analysis of direct transition in SiGeSn/GeSn strain balanced QWIP. Opt. Quantum Electron. 48, 1–11 (2016)

    Article  Google Scholar 

  31. Pareek, P., Das, M.K., Kumar, S.: Theoretical analysis of tin incorporated group IV alloy based QWIP. Superlatt. Microstruct. 107, 56–68 (2017)

    Article  Google Scholar 

  32. Pareek, P., Das, M.K., Kumar, S.: Responsivity calculation of group IV based inter band MQWIP. J. Comput. Electron. 17, 319–328 (2018)

    Article  Google Scholar 

  33. Pareek, P., Ranjan, R., Das, M.K.: Numerical analysis of tin incorporated group IV alloy based MQWIP. Opt. Quantum Electron. 50, 179 (2018)

    Article  Google Scholar 

  34. Pareek, P., Ranjan, R., Pandey, S.K., Mishra, J.K., Kushwaha, A.K.: Performance comparison of tin based group IV SQWIP and MQWIP in dark conditions. Nanophotonics VIII Proc. SPIE 11345, 113452A (2020)

    Google Scholar 

  35. Nejad, S.M., Olyaee, S., Pourmahyabadi, M.: Optimal dark current reduction in quantum well 9 µm GaAs/AlGaAs infrared photodetectors with improved detectivity. Am. J. Appl. Sci. 5, 1071–1078 (2008)

    Article  Google Scholar 

  36. Gunapala, S.D., Rhiger, D.R., Jagadish, C.: Advances in Infrared Photodetectors, vol. 84, 1st edn. Academic, Cambridge (2011)

    Google Scholar 

  37. Ghosh, S., Mukhopadhyay, B., Sen, G., Basu, P.K.: Performance analysis of GeSn/SiGeSn quantum well infrared photodetector in terahertz wavelength region. Physica E 115, 113692 (2020)

    Article  Google Scholar 

  38. Levine, B.F., Bethea, C.G., Hasnain, G., Shen, V.O., Pelve, E., Abbott, R.R., Hsieh, S.J.: High sensitivity low dark current 10µm GaAs quantum well infrared photodetectors. Appl. Phys. Lett. 56, 851–853 (1990)

    Article  Google Scholar 

  39. Chuang, S.L.: Physics of Optoelectronic Devices. Wiley-Interscience, Hoboken (1995)

    Google Scholar 

  40. Pham, T., Du, W., Tran, H., Margetis, J., Tolle, J., Sun, G., Soref, R.A., Naseem, H.A., Li, B., Yu, S.-Q.: Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection. Opt. Express 24, 4519–4531 (2016)

    Article  Google Scholar 

  41. Kumar, H., Basu, R., Chang, G.-E.: Impact of temperature and doping on the performance of Ge/Ge1−xSnx/Ge heterojunction phototransistors. IEEE Photon. J 12, 6801814 (2020)

    Google Scholar 

  42. Gunapala, S.D., Bandara, K.M.S.V.: Recent developments in quantum well infrared photodetectors. Phys. Thin Films 21, 113–237 (1995)

    Article  Google Scholar 

  43. Khalil, H.M., Balkan, N.: Carrier trapping and escape times in p-i-n GaInAs MQW structures. Nanoscale Res. Lett. 9, 1–4 (2014)

    Article  Google Scholar 

  44. Dong, Y., Wang, W., Lei, D., Gong, X., Zhou, Q., Lee, S.Y., Loke, W.K., Yoon, S.-F., Tok, E.S., Liang, G., Yeo, Y.-C.: Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique. Opt. Express 23, 18611–18619 (2015)

    Article  Google Scholar 

  45. Zhou, G., Runge, P.: Modeling of multiple-quantum-well p-i-n photodiodes. IEEE J. Quantum Electron. 50, 220–227 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported under the joint Indo-Taiwan Program “High Responsivity GeSn Short wave Infrared Phototransistor” in Science and Technology, Project No. GITA/DST/TWN/P-63/2015 by the Department of Science and Technology (DST), Govt. of India. S.G. receives financial support from this project under a Junior Research Fellowship (JRF) award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumava Ghosh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Bhattacharyya, A., Sen, G. et al. Optimization of different structural parameters of GeSn/SiGeSn Quantum Well Infrared Photodetectors (QWIPs) for low dark current and high responsivity. J Comput Electron 20, 1224–1233 (2021). https://doi.org/10.1007/s10825-021-01668-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01668-w

Keywords

Navigation