Skip to main content
Log in

Optical absorption in bilayer graphene superlattices

  • Manuscript
  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A periodic statistical potential applied in each layer of bilayer graphene can change it to a superlattice, enabling its application as a flexible light absorber. In this work, the effect of structural parameters on the optical absorption and bandgap of such a bilayer graphene superlattice is studied theoretically in detail. The bilayer graphene superlattice consists of two single layers of graphene with different patterns of static periodic potential applied. The role of the unit cell length, different ratios between the width of each region, and the magnitude of the applied potential in the optical absorption is analyzed in detail. The results reveal that the optical absorption can be enhanced by increasing the magnitude of the square static periodic potential applied to each single layer of graphene. The effect of light polarization is also addressed. It is observed that different ratios of the widths of periodic regions do not change the absorption, while the configuration and value of the square static periodic potential applied plays a crucial role in the absorption spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., Firsov, A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Google Scholar 

  2. Novoselov, K.S., Geim, A., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S., Firsov, A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)

    Article  Google Scholar 

  3. Peres, N.M.R.: Scattering in one-dimensional heterostructures described by the Dirac equation. Rev. Mod. Phys. 82, 2673 (2010)

    Article  Google Scholar 

  4. Zarenia, M., Vasilopoulos, P., Peeters. F. M.: Magnetotransport in periodically modulated bilayer graphene. Phys. Rev. B . 85 (2012)

  5. Rezapour, M.R., Yun, J., Lee, G., Kim, K.S.: Lower electric field-driven magnetic phase transition and perfect spin filtering in graphene nanoribbons by edge functionalization. J. Phys. Chem. Lett. 7, 5049 (2016)

    Article  Google Scholar 

  6. Rezapour, M. R., Myung, C.W., Yun, J., Ghassami, A., Li, N., Uk Y.S., Hajibabaei, A., Park, Y., Kim. K. S.: Graphene and Graphene analogs toward optical electronic spintronic green-chemical energy-material sensing and medical applications. ACS Appl. Mater. Interfaces 9, 24393 (2017)

  7. Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of quantum Hall effect and Berry’s phase in graphene. Nat. Lond. 438, 201 (2005)

    Article  Google Scholar 

  8. Gebhardt, J., Koch, R.J., Zhao, W., Hfert, O., Gotterbarm, K., Mammadov, S., Papp, C., Grling, A., Steinrck, H.-P., Seyller, T.: Growth and electronic structure of boron-doped graphene. Phys. Rev. B. 87, 155437 (2013)

    Article  Google Scholar 

  9. Martins, T.B., Miwa, R.H., da Silva, A.J.R., Fazzio, A.: Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98, 196803 (2007)

    Article  Google Scholar 

  10. Wang, H., Maiyalagan, T., Wang, X.: Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal. 2, 781 (2012)

    Article  Google Scholar 

  11. Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J., van den Brink, J.: Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B. 76, 073103 (2007)

    Article  Google Scholar 

  12. Ilyasov, V.V., Meshi, B.C., Nguyen, V.C., Ershov, I.V., Nguyen, D.C.: Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field. Chem. Phys. 141, 014708 (2014)

    Google Scholar 

  13. Zhou, S.Y., Gweon, G.-H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.-H., Guinea, F., Castro Neto, A.H., Lanzara, A.: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770 (2007)

    Article  Google Scholar 

  14. Li, G., Luican, A., Andrei, E.: Scanning tunneling spectroscopy of graphene on graphite. Phys. Rev. Lett. 102, 176804 (2009)

    Article  Google Scholar 

  15. Kiselev, Y.Y., Golub, L.E.: Optical and photogalvanic properties of graphene superlattices formed by periodic strain. Phys. Rev. B. 84, 235440 (2011)

    Article  Google Scholar 

  16. Mishchenko, A., Tu, J.S., Cao, Y., Gorbachev, R.V., Wallbank, J.R., Greenaway, M.T., Morozov, V.E., Morozov, S.V., Zhu, M.J., Wong, S.L., et al.: Twist controlled resonant tunnelling in graphene boron nitride graphene. Nat. Nanotechnol. 9, 808–813 (2014)

    Article  Google Scholar 

  17. Li, L., Wu, G., Yang, G., Peng, J., Zhao, J., Zhu, J.-J.: Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5, 4015 (2013)

    Article  Google Scholar 

  18. Beenakker, C.W.J.: Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337 (2008)

    Article  Google Scholar 

  19. Calogeracos, A., Dombey, N.: History and physics of the Klein paradox. Contemp. Phys. 40, 313–321 (1999)

    Article  MATH  Google Scholar 

  20. Du, X., Skachko, I., Barkar, A.: Approaching ballistic transport in suspended graphene. Nat. Nanotech. 3, 491 (2008)

    Article  Google Scholar 

  21. Nebogatikova, N.A., Antonova, I., Prinz, V., Kurkina, I., Aleksandrov, G., Timofeev, V., Smagulova, S., Zakirov, E., Kesler, V.: Fluorinated graphene dielectric films obtained from functionalized graphene suspension: preparation and properties. Phys. Chem. Chem. Phys. 17, 13257 (2015)

    Article  Google Scholar 

  22. Nebogatikova, N.A., Antonova, I.V., Kurkina, I.I., Soots, R.A., Vdovin, V.I., Timofeev, V.B., Smagulova, S.A., Prinz, V.Y.: Fluorinated graphene suspension for inkjet printed technologies. Nanotechnology 27, 205601 (2016)

    Article  Google Scholar 

  23. Antonova, I.V., Nebogatikova, N.A., Prinz, V.Y.: Self-organized arrays of graphene and few-layer graphene quantum dots in fluorographene matrix: Charge transient spectroscopy. Appl. Phys. Lett. 104, 193108 (2014)

    Article  Google Scholar 

  24. Sattari-Esfahlan, S.M., Fouladi Oskuei, J., Shojaei, S.: Robust low-bias negative differential resistance in graphene superlattices. J. Phys. D Appl. Phys. 50, 255102 (2017)

    Article  Google Scholar 

  25. da Costa, D.R., Zarenia, M., Chaves, A., Farias, G.A., Peeters, F.M.: Analytical study of the energy levels in bilayer graphene quantum dots. Carbon ScienceDirect 78, 392400 (2014)

    Google Scholar 

  26. Zarenia, M., Partoens, B., Chakraborty, T., Peeters, F.M.: Electron-electron interactions in bilayer graphene quantum dots. Phys. Rev. B. 88, 245432 (2013)

    Article  Google Scholar 

  27. Li, L.L., Zarenia, M., Xu, W., Dong, H.M., Peeters, F.M.: Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley transition. Phys. Rev. B. 95, 045409 (2017)

    Article  Google Scholar 

  28. Capasso, F.: Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987)

    Article  Google Scholar 

  29. Tsu, R.: Superlattice to Nanoelectronics, Oxford UK (2005)

  30. Sattari-Esfahlan, S.M., Fouladi Oskuei, J., Shojaei, S.: Tunable negative differential resistance in planar graphene superlattice resonant tunneling diode. J. Appl. Phys. 121, 144506 (2017)

    Article  Google Scholar 

  31. Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.N., Heer, W.A.D., Lee, D.H., Guinea, F., Castro Neto, A.H., Lanzara, A.: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770 (2007)

    Article  Google Scholar 

  32. Duplock, E.J., Scheffler, M., Lindan, P.J.D.: Hallmark of Perfect Graphene. Phys. Rev. Lett. 92, 225502 (2004)

    Article  Google Scholar 

  33. Chernozatonski, L.A., Sorokin, P.B., Belova, E.E., Brüning, J., Fedorov, A.S.: Superlattices Consisting of “Lines” of adsorbed hydrogen atom pairs on graphene. JETP Lett. 85, 77 (2007)

  34. Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B. 75, 153401 (2007)

    Article  Google Scholar 

  35. Pedersen, T.G., Flindt, C., Pedersen, J., Mortensen, N.A., Jauho, A.-P., Pedersen, K.: Graphene antidot lattices designed defects and spin qubits. Phys. Rev. Lett. 100, 136804 (2008)

    Article  Google Scholar 

  36. Lima, J.R.F.: Electronic structure of a graphene superlattice with a modulated Fermi velocity. Phys. Lett . pp. 0375–0960 (2015)

  37. Lima, J.R.F.: Controlling the energy gap of graphene by Fermi velocity engineering. Phys. Lett. 379, 179182 (2015)

    Article  Google Scholar 

  38. Maksimova, G.M., Azarova, E.S., Telezhnikov, A.V., Burdov, V.A.: Graphene superlattice with periodically modulated Dirac gap. Phys. Rev. B. 86, 205422 (2012)

    Article  Google Scholar 

  39. Azadi, L., Shojaei, S.: Optical absorption in planar graphene superlattice: The role of structural parameters. Superlattice. Microst. 116, 95e104 (2018)

    Article  Google Scholar 

  40. Azadi, L., Shojaei, S.: Optical absorption in Thue-Morse and Fibonacci planar graphene superlattices: Theoretical report. Physica B 564, 10–16 (2019)

    Article  Google Scholar 

  41. McCann, E., Abergel, D.S.L., Fal’ko, V.I.: Electrons in bilayer graphene. Solid State Commun. 143, 110 (2007)

    Article  Google Scholar 

  42. McCann, E., Abergel, D.S.L., Fal’ko, V.I.: The low energy electronic band structure of bilayer graphene. Eur. Phys. J. Spec. Top. 148, 91–103 (2007)

    Article  Google Scholar 

  43. Abergel, D.S.L., Fal’ko, V.I.: Optical and magneto-optical far-infrared properties of bilayer graphene. Phys. Rev. B. 75, 155430 (2007)

    Article  Google Scholar 

  44. Guinea, F., Castro Neto, A., Peres, N.: Electronic states and Landau levels in graphene stacks. Solid State Commun. 143, 116–22 (2007)

    Article  Google Scholar 

  45. Castro Neto, A.H., Guinea, F., Peters, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  Google Scholar 

  46. Barbier, M., Peeters, F.M., Vasilopoulos, P., Pereira, M.J., Jr.: Dirac and Klein-Gordon particles in one-dimensional periodic potentials. Phys. Rev. B 77, 115446 (2008)

    Article  Google Scholar 

  47. Barbier, M., Vasilopoulos, P., Peeters, F.M.: Dirac electrons in a Kronig–Penney potential: dispersion relation and transmission periodic in the strength of the barriers. Phys. Rev. B. 80, 205415 (2009)

    Article  Google Scholar 

  48. Castro, V.E., Novoselov, K.S., Morozov, V.S., Peres, R.N.M., Santos, J.M.B.L., Nilsson, J., Guinea, F., Geim, A.K., Castro, N.A.H.: Electronic properties of a biased graphene bilayer. J. Phys. Condens. Matter 22, 175503 (2010)

    Article  Google Scholar 

  49. McCann, E.: Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006)

    Article  Google Scholar 

  50. Guinea, F., Castro Neto, A.H., Peres, N.M.R.: Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006)

    Article  Google Scholar 

  51. Oostinga, J.B., Heersche, H.B., Liu, X., Morpurgo, A.F., Vandersypen, L.M.K.: Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151–157 (2008)

    Article  Google Scholar 

  52. Verberck, B., Partoens, B., Peeters, F.M., Trauzettel, B.: Strain-induced band gaps in bilayer graphene. Phys. Rev. B 85, 125403 (2012)

    Article  Google Scholar 

  53. Snyman, I., Beenakker, C.W.J.: Ballistic transmission through a graphene bilayer. Phys. Rev. B 75, 045322 (2007)

    Article  Google Scholar 

  54. McCann, E., Koshino, M.: The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013)

    Article  Google Scholar 

  55. Killi, M., Wu, S., Paramekanti, A.: Band structures of bilayer graphene superlattices. Phys. Rev. Lett. 107, 086801 (2011)

    Article  Google Scholar 

  56. Ohta, T., Bostwick, A., Seyller, Th., Horn, K., Rotenberg, E.: Controlling the electronic structure of bilayer graphene. Science 313, 951 (2006)

    Article  Google Scholar 

  57. Moon, P., Koshino, M.: Optical absorption in twisted bilayer graphene. Phys. Rev. B 87, 205404 (2013)

    Article  Google Scholar 

  58. Abergel, D.S.L., Fal’ko, V.I.: Optical and magneto-optical far-infrared properties of bilayer graphene. Phys. Rev. B 75, 155430 (2007)

    Article  Google Scholar 

  59. Mu, X., Sun, M.: The linear and non-linear optical absorption and asymmetrical electromagnetic interaction in chiral twisted bilayer graphene with hybrid edges. Mater. Today Phys. 14, 100222 (2020)

    Article  Google Scholar 

  60. Huang, B.-L., Chuu, C.-P., Lin, M.-F.: Asymmetry-enriched electronic and optical properties of bilayer graphene. Sci. Rep. 9, 859 (2019)

    Article  Google Scholar 

  61. Yang, H., Feng, X., Wang, Q., Huang, H., Chen, W., Wee, A.T.S., Ji, W.: Giant two-photon absorption in bilayer graphene. Nano Lett. 117, 2622–2627 (2011)

    Article  Google Scholar 

  62. Kadi, F., Malic, E.: Optical properties of Bernal-stacked bilayer graphene: a theoretical study. Phys. Rev. B 89, 045419 (2014)

    Article  Google Scholar 

  63. Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M.C., Zettl, A., Crommie, M.F., Ron, S.Y., Wang, F.: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009)

    Article  Google Scholar 

  64. Briones-Torres, J.A., Rodríguez-Vargas, I.: Fano resonances in bilayer graphene superlattices. Sci. Rep. 7, 16708 (2017)

    Article  Google Scholar 

  65. Mukhopadhyay, S., Biswas, R., Sinha, C.: Resonant tunnelling in a Fibonacci bilayer graphene superlattice. Phys. Status Solidi B 247, 342–346 (2010)

    Article  Google Scholar 

  66. Li, C., Cheng, H., Chen, R., Ma, T., Wang, L.-G., Song, Y., Lin, H.-Q.: Electronic band gaps and transport properties in aperiodic bilayer graphene superlattices of Thue-Morse sequence. Appl. Phys. Lett. 103, 172106 (2013)

    Article  Google Scholar 

  67. Mu, X., Sun, M.: Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Appl. Phys. Lett. 117, 091601 (2020)

    Article  Google Scholar 

  68. Wang, L.-G., Zhu, S.-Y.: Electronic band gaps and transport properties in graphene superlattices with one-dimensional periodic potentials of square barriers. Phys. Rev. B. 81, 205444 (2010)

    Article  Google Scholar 

  69. Barbier, M., Vasilopoulos, P., Peeters, F.M.: Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines. Phil. Trans. R. Soc. 368, 5499–5524 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  70. Xiong, F., Huang, W., Ma, T., Wang, L.-G.: Tunable electronic band structures and zero-energy modes of heterosubstrate-induced graphene superlattices. Phys. Rev. B 93, 165137 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. M. Zarenia from the Department of Physics, who was working at the University of Missouri during this study, for helpful comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shojaei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azadi, L., Shojaei, S. Optical absorption in bilayer graphene superlattices. J Comput Electron 20, 1248–1259 (2021). https://doi.org/10.1007/s10825-021-01670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01670-2

Keywords

Navigation