Skip to main content
Log in

Fine Ultra-small Ruthenium Oxide Nanoparticle Synthesis by Using Catharanthus roseus and Moringa oleifera Leaf Extracts and Their Efficacy Towards In Vitro Assays, Antimicrobial Activity and Catalytic: Adsorption Kinetic Studies Using Methylene Blue Dye

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A simple one step green procedure is intended to investigate for the first time by employing ruthenium oxide nanoparticles (RuO2 NPs) derived from Catharanthus roseus (CR) and Moringa oleifera (MO) leaves and evaluate their catalytic—degradation of MB dye, antibacterial screening and in vitro antioxidant assays. The as-synthesized RuO2 NPs were characterized by XRD, HR-TEM, FT-IR, EDX and UV–Visible spectrometer. The HR-TEM image reveals spherical morphology with average particle size 5.6 nm (CR-RuO2 NP) and 4.6 nm (MO-RuO2 NP). The research findings of the current study elucidates the superiority of CR-RuO2 NPs and well exhibited towards scavenging activity, admirable anti-bacterial effect against K. pneumonia (21.6 ± 0.24 mm), and catalytic degradation percentage as 79.02%. The adsorption kinetics indeed suggest more impressive pseudo-second-order kinetic model than Lagergren first-order kinetics at 10 ppm concentration of MB dye. Our results thus provide a platform for further research on the applications of RuO2 NPs as disinfectant and better catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Singh, D. Kukkara, R. Singh, P. Kukkard, N. Bajaj, J. Singh, M. Rawat, A. Kumar, and K. Kim (2019). J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2019.09.008.

    Article  Google Scholar 

  2. S. Jain and M. M. Singh (2017). J. Sci. Rep. 7, 15867. https://doi.org/10.1038/s41598-017-15724-8.

    Article  CAS  Google Scholar 

  3. M. Nasrollahzadeh and S. M. Sajadi (2015). J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2015.08.020.

    Article  PubMed  Google Scholar 

  4. I. Fierascu, M. I. Georgiev, A. Ortan, R. C. Fierascu, S. M. Avramescu, D. Ionescu, A. Sutan, A. Brinzan, and L. M. Ditu (2017). J. Sci. Rep. 7, 12428. https://doi.org/10.1038/s41598-017-12804-7.

    Article  CAS  Google Scholar 

  5. J. Singh, P. Kukkar, H. Sammi, M. Rawat, G. Singh, and D. Kukkar (2017). Particulate Sci Technol. https://doi.org/10.1080/02726351.2017.1390512.

    Article  Google Scholar 

  6. J. Singh, H. Kaur, D. Kukkar, V. K. Mukamia, S. Kumar, and M. Rawat (2019). Mater. Res. Express. 6, 115007.

    Article  CAS  Google Scholar 

  7. N. Saifuddin, C. W. Wong, and A. A. Nur Yasumira (2009). J. Chem. 6, 61–70.

    CAS  Google Scholar 

  8. K. Okitsu, Y. Mizukoshi, T. A. Yamamoto, Y. Maeda, and Y. Nagata (2007). Mater Lett. 61, 3429–3431.

    Article  CAS  Google Scholar 

  9. M. M. El-Sheekh and H. Y. El-Kassas (2016). Genet. Eng. Biotechnol. 14, 299–310.

    Article  Google Scholar 

  10. N. E. El-Naggar, A. Mohamedin, S. S. Hamza, and A. Sherief (2016). J Nanomate. ID 3257359.

  11. M. Gilaki (2010). J. Biol. Sci. 10, 465–467.

    Article  CAS  Google Scholar 

  12. Atta-ul-Haq, M. Saeed, M. A. Jamal, N. Akram, T. H. Bokhari, and U. Afaqet (2018). Z. Phys. Chem. AOP

  13. M. Nasrollahzadeh and S. M. Sajadi (2015). RSC Adv. 5, 46240.

    Article  CAS  Google Scholar 

  14. S. M. Sajadi, M. Nasrollahzadeh, and M. Maham (2016). J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2016.02.009.

    Article  PubMed  Google Scholar 

  15. K. Singh, D. Kukkar, R. Singh, P. Kukkar, and K. Kim (2018). J. Ind. Eng. Chem. 81, 196–205. https://doi.org/10.1016/j.jiec.2018.07.026.

    Article  CAS  Google Scholar 

  16. S. M. Anjum, C. H. Khadri, and K. Riazunnisa (2017). ATMS (Ed. Narayana Reddy) Roshan Publishers, (Chapter 6, pp. 64–69).

  17. S. M. Anjum, M.V. Vani and K. Riazunnisa (2019). Emerging Trends in Advanced Spectroscopy (Ed. Y. Weiman, K.P. Jibin, G.L Praveen, S. Thomas, and N. Kalarikkal) Rivers publishers, (Chapter 6, pp. 69–79).

  18. S. M. Anjum and K. Riazunnisa (2020). Data Brief 29, 105258. https://doi.org/10.1016/j.dib.2020.105258.

    Article  Google Scholar 

  19. S. K. Kannan and M. Sundararajan (2015). Adv. Powder Technol. 26, 1505–1511. https://doi.org/10.1016/j.apt.2015.08.009.

    Article  CAS  Google Scholar 

  20. P. K. Gupta and L. Mishra (2020). Nanoscale Adv. 2, 1774.

    Article  CAS  Google Scholar 

  21. P. Banerjee and D. Nath (2015). Nano Sci. Technol. 2, 1–14.

    Google Scholar 

  22. K. Gopinath, K. Viswanathan, S. Gowri, S. Venugopal, K. Subramanian, and A. Arumugam (2014). J. Nano Struct. Chem. 4, 83.

    Article  Google Scholar 

  23. T. J. L. Edison and M. G. Sethuraman (2012). J. Process. Biochem. 47, 1351–1357.

    Article  CAS  Google Scholar 

  24. S. Lagergren (1989). Handlingar 24, 1–39.

    Google Scholar 

  25. Y. S. Ho and G. McKay (1999). Process. Biochem. 34, 451–465.

    Article  CAS  Google Scholar 

  26. S. Gupta, C. Giordano, M. Gradzielski, and S. K. Mehta (2013). J. Colloid Interface Sci. 411, 173–181.

    Article  CAS  Google Scholar 

  27. P. S. S. Kumar, A. Manivel, S. Anandan, M. Zhou, F. Grieser, and M. A. Kumar (2010). Colloid Surf. A 356, 140–144.

    Article  CAS  Google Scholar 

  28. S. Duman and S. Ozkar (2013). Int. J. Hydrog. Energy 38, 10000–10011.

    Article  CAS  Google Scholar 

  29. G. Borah and P. Sharma (2011). Indian J. Chem Sect. B. 50, 41–45.

    Google Scholar 

  30. Y. Wang and N. Herron (1991). J. Phys. Chem. 95, 525–532.

    Article  CAS  Google Scholar 

  31. J. W. Racquel, S. K. Lee, I. H. Hyacinth, J. M. Hibbert, M. E. Reid, A. O. Wheatley, and H. N. Asemota (2017). Plants 6, 48. https://doi.org/10.3390/plants6040048.

    Article  CAS  Google Scholar 

  32. H. E. Miller, F. Rigelhof, L. Marquart, A. Prakash, and M. Kanter (2000). Nutrition 19, 3125–3195.

    Google Scholar 

  33. K. Jyothi and A. Singh (2016). J. Genet. Eng. Biotechnol. 14, 311–317.

    Article  Google Scholar 

  34. T. Shahwan, S. A. Sirriah, M. Nairat, E. Boyac, A. E. Eroglu, T. B. Scott, and K. R. Hallman (2011). Chem. Eng. J. 172, 258–266.

    Article  CAS  Google Scholar 

  35. M. K. Indana, B. R. Gangapuram, R. Dandigala, R. Bandi, and V. Guttena (2016). J. Anal. Sci. Technol. 7, 19.

    Article  Google Scholar 

  36. M. Atarod, M. Nasrollahzadeh, and S. M. Sajadi (2016). J. Colloid Interface Sci. 462, 272–279.

    Article  CAS  Google Scholar 

  37. T. V. M. Sreekanth, M. J. Jung, and I. Y. Eom (2016). Appl. Surf. Sci. 361, 102–106.

    Article  CAS  Google Scholar 

  38. R. S. Gonzalo, R. T. Neira, C. Alvarado, C. I. Blancheteau, N. Benito, A. G. Rodríguez, R. Marcos, H. Pesenti, and E. R. Carmona (2019). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04934-4.

    Article  Google Scholar 

  39. M. Zahoor, A. Arshad, Y. Khan, et al. (2018). Appl. Nanosci. 8, 1091–1099.

    Article  CAS  Google Scholar 

  40. X. Yang, H. Zhong, Y. Zhu, H. Jiang, J. Shen, J. Huang, and C. Li (2014). J. Mater. Chem. A 2, 9040–9047.

    Article  CAS  Google Scholar 

  41. W. K. Azira, W. M. Khalir, K. Shameli, S. D. Jazayeri, N. A. Othman, N. W. C. Jusoh, and N. M. Hassan (2020). Nanomaterials 10, 1104. https://doi.org/10.3390/nano10061104.

    Article  CAS  Google Scholar 

  42. T. Sowmyya and G. V. Lakshmi (2018). J. Environ. Chem. Eng. 6, 3590–3601.

    Article  CAS  Google Scholar 

  43. S. Yihan, L. Mingming, and Z. Guo (2018). J. Colloids Interface Sci. 527, 187–194.

    Article  Google Scholar 

  44. P. S. Rajegaonkar, B. A. Deshpande, M. S. More, S. S. Waghmare, V. V. Sangawe, A. Inamdar, M. D. Shirsat, and N. N. Adhapure (2018). Mater. Sci. Eng. 93, 623–629.

    CAS  Google Scholar 

  45. B. Sreedhar, D. K. Devi, and D. Yada (2011). Catal. Commun. 12, 1009.

    Article  CAS  Google Scholar 

  46. Z. Wang, C. Xu, G. Gao, and X. Li (2014). RSC Adv. 40, 13644.

    Article  Google Scholar 

  47. P. Zhang, Y. Sui, C. Wang, Y. Wang, G. Cui, and C. Wang (2014). Nanoscale 6, 5343.

    Article  CAS  Google Scholar 

  48. L. Ai, C. Zeng, and Q. Wang (2011). Catal. Commun. 14, 68.

    Article  CAS  Google Scholar 

  49. A. Hatamifard, M. Nasrollahzadeh, and J. Lipkowski (2015). RSC Adv. https://doi.org/10.1039/C5RA18476B.

    Article  Google Scholar 

  50. K. L. Wu, X. W. Wei, X. M. Zhou, D. H. Wu, X. W. Liu, Y. Ye, et al. (2011). J Phys Chem C. 115, 16268e74.

    Google Scholar 

  51. M. Maryami, M. Nasrollahzadeh, E. Mehdipour, and S. M. Sajadi (2016). Int. J. Hydrogen Energy 41, 21236–21245. https://doi.org/10.1016/j.ijhydene.2016.09.130.

    Article  CAS  Google Scholar 

  52. R. Shani, H. Singh, R. Trivedi, and V. Soni (2020). J. Sci. Rep. 10, 9616. https://doi.org/10.1038/S41598-020-66851-8.

    Article  Google Scholar 

  53. S. Kumar, C. M. A. ParleH, M. A. Isaacs, D. V. Jowett, R. E. Douthwaite, M. C. R. Cockett, and A. Lee (2016). Appl. Catal. B 189, 226–232.

    Article  CAS  Google Scholar 

  54. W. Zou, Z. Lei, L. Liu, X. Wang, J. Sun, S. Wu, D. Yu, C. Tang, G. Fci, and D. Lin (2016). Appl. Catal. B 181, 495–503.

    Article  CAS  Google Scholar 

  55. S. Li, Q. Lin, X. Liu, L. Yang, J. Ding, F. Dong, Y. Li, M. Irfan, and P. Zhang (2018). RSC Adv. 8, 20277–20286.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author SAM express gratitude towards UGC for the award of MANF research fellowship [Grant No. F1-17.1/2017-18/MANF-2017-18-AND-73354/ (SAIII/Website)] and also thankful to Yogi Vemana University for the facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Riazunnisa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjum, S.M., Riazunnisa, K. Fine Ultra-small Ruthenium Oxide Nanoparticle Synthesis by Using Catharanthus roseus and Moringa oleifera Leaf Extracts and Their Efficacy Towards In Vitro Assays, Antimicrobial Activity and Catalytic: Adsorption Kinetic Studies Using Methylene Blue Dye. J Clust Sci 33, 1103–1117 (2022). https://doi.org/10.1007/s10876-021-02037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02037-0

Keywords

Navigation