Skip to main content
Log in

Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding (FSW), friction stir vibration welding (FSVW), and tungsten inert gas welding (TIG). FSVW is a modified version of FSW wherein the joining specimens are vibrated normal to the welding line during FSW. The results indicated that the weld region grains for FSVW and FSW were equiaxed and were smaller than the grains for TIG. In addition, the weld region grains for FSVW were finer compared with those for FSW. Results also showed that the strength, hardness, and toughness values of the joints produced by FSVW were higher than those of the other joints produced by FSW and TIG. The vibration during FSW enhanced dynamic recrystallization, which led to the development of finer grains. The weld efficiency of FSVW was approximately 81%, whereas those of FSW and TIG were approximately 74% and 67%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Maisonnette, M. Suery, D. Nelias, P. Chaudet, and T. Epicier, Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy, Mater. Sci. Eng. A, 528(2011), No. 6, p. 2718.

    Article  Google Scholar 

  2. W. Lucas, TIG and Plasma Welding: Process Techniques, Recommended Practices and Applications, Woodhead Publishing, Cambridge, 1990.

    Book  Google Scholar 

  3. M. Jafari, M. Abbasi, D. Poursina, A. Gheysarian, and B. Bagheri, Microstructures and mechanical properties of friction stir welded dissimilar steel-copper joints, J. Mech. Sci. Technol., 31(2017), No. 3, p. 1135.

    Article  Google Scholar 

  4. M. Abbasi, A. Abdollahzadeh, H. Omidvar, B. Bagheri, and M. Rezaei, Incorporation of SiC particles in FS welded zone of AZ31 Mg alloy to improve the mechanical properties and corrosion resistance, Int. J. Mater. Res., 107(2016), No. 6, p. 566.

    Article  CAS  Google Scholar 

  5. H. Mostaan, M. Safari, and A. Bakhtiari, Micro friction stir lap welding of AISI 430 ferritic stainless steel: A study on the mechanical properties, microstructure, texture and magnetic properties, Metall. Res. Technol, 115(2018), No. 3, art. No. 307.

  6. A. Abdollahzadeh, A. Shokuhfar, H. Omidvar, J.M. Cabrera, A. Solonin, A. Ostovari, and M. Abbasi, Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds, Proc. Inst. Mech. Eng. Part L: J. Mater: Des. Appl., 233(2019), No. 5, p. 831.

    CAS  Google Scholar 

  7. A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P. Zhilyaev, and H. Omidvar, In-situ nanocomposite in friction stir welding of 6061-T6 aluminum alloy to AZ31 magnesium alloy, J. Mater. Proc. Technol., 263(2019), p. 296.

    Article  CAS  Google Scholar 

  8. A. Abdollahzadeh, A. Shokuhfar, J.M. Cabrera, A.P. Zhilyaev, and H. Omidvar, The effect of changing chemical composition on dissimilar Mg/Al friction stir welded butt joints using zinc interlayer, J. Manuf. Processes, 34(2018), p. 18.

    Article  Google Scholar 

  9. T.G. Santos, R.M. Miranda, and P. Vilaça, Friction stir welding by electrical Joule effect, J. Mater. Proc. Technol., 214(2014), No. 10, p. 2127.

    Article  CAS  Google Scholar 

  10. X. Liu, S.H. Lan, and J. Ni, Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel, J. Mater. Proc. Technol., 219(2015), p. 112.

    Article  CAS  Google Scholar 

  11. M.O. Terje, K.A. Ove, and G. Øystein, Modified Friction Stir Welding, International Patent, Appl. WO99039861, 1999.

  12. K. Gabriel, Improved Process and Apparatus for Friction Stir Welding, International Patent, Appl. WO02074479, 2002.

  13. S.L. Campanelli, G. Casalino, C. Casavola, and V. Moramarco, Analysis and comparison of friction stir welding and laser assisted friction stir welding of aluminum alloy, Materials, 6(2013), No. 12, p. 5923.

    Article  Google Scholar 

  14. F. Blaha and B. Langenecker, Tensile deformation of zinc crystal under ultrasonic vibration, Naturwissenschaften, 42(1955), No. 556, p. 1.

    Google Scholar 

  15. K. Park, G.Y. Kim, and J. Ni, Design and analysis of ultrasonic assisted friction stir welding, [in] ASME 2007 International Mechanical Engineering Congress and Exposition, Seattle, Washington, 2007, p. 731.

  16. Y. Liu and S. Lu, Effects of ultrasonic vibration on the welding process of friction stir welding, Mater. Sci. Forum, 850(2016), p. 710.

    Article  Google Scholar 

  17. H.K. Ma, D.Q. He, and J.S. Liu, Ultrasonically assisted friction stir welding of aluminum alloy 6061, Sci. Technol. Weld. Joining, 20(2015), No. 3, p. 216.

    Article  CAS  Google Scholar 

  18. S. Amini and M.R. Amiri, Study of ultrasonic vibrations’ effect on friction stir welding, Int. J. Adv. Manuf. Technol., 73(2014), No. 1–4, p. 127.

    Article  Google Scholar 

  19. G.K. Padhy, C.S. Wu, and S. Gao, Auxiliary energy assisted friction stir welding — status review, Sci. Technol. Weld. Joining, 20(2015), No. 8, p. 631.

    Article  CAS  Google Scholar 

  20. X.C. Liu and C.S. Wu, Experimental study on ultrasonic vibration enhanced friction stir welding, [in] H. Fujii, ed., Proceedings of the 1st International Joint Symposium on Joining and Welding, Osaka, 2013, p. 151.

  21. G.K. Padhy, C.S. Wu, and S. Gao, Subgrain formation in ultrasonic enhanced friction stir welding of aluminium alloy, Mater. Lett., 183(2016), p. 34.

    Article  CAS  Google Scholar 

  22. A. Siddiq and T.E. Sayed, Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations, Ultrasonics, 52(2012), No. 4, p. 521.

    Article  Google Scholar 

  23. L. Shi, C.S. Wu, and X.C. Liu, Modeling the effects of ultrasonic vibration on friction stir welding, J. Mater. Process. Technol., 222(2015), p. 91.

    Article  CAS  Google Scholar 

  24. M. Rahmi and M. Abbasi, Friction stir vibration welding process: Modified version of friction stir welding process, Int. J. Adv. Manuf. Technol., 90(2017), No. 1–4, p. 141.

    Article  Google Scholar 

  25. S. Fouladi and M. Abbasi, The effect of friction stir vibration welding process on characteristics of SiO2 incorporated joint, J. Mater. Process. Technol., 243(2017), p. 23.

    Article  CAS  Google Scholar 

  26. ASTM International, ASTM E3–11: Standard Guide for Preparation of Metallographic Specimens, ASTM International, West Conshohocken, 2017.

    Google Scholar 

  27. ASTM International, ASTM E112–13: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, 2013.

    Google Scholar 

  28. ASTM International, ASTM E8/E8M-16ae1: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2016.

    Google Scholar 

  29. ASTM International, ASTM E92–17: Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM International, West Conshohocken, 2017.

    Google Scholar 

  30. ASTM International, ASTM E23–18: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, 2018.

    Google Scholar 

  31. O. Barooni, M. Abbasi, M. Givi, and B. Bagheri, New method to improve the microstructure and mechanical properties of joint obtained using FSW, Int. J. Adv. Manuf. Technol., 93(2017), No. 9–12, p. 4371.

    Article  Google Scholar 

  32. X.D. Yu, P. Zuo, J. Xiao, and Z. Fan, Detection of damage in welded joints using high order feature guided ultrasonic waves, Mech. Syst. Sig. Process., 126(2019), p. 176.

    Article  Google Scholar 

  33. Y.S. Wang, T. Gao, D.B. Liu, H. Sun, B.R. Miao, and X.L. Qing, Propagation characteristics of ultrasonic weld-guided waves in friction stir welding joint of same material, Ultrasonics, 102(2020), art. No. 106058.

  34. W.H. Minnick and M.A. Prosser, Gas Tungsten Arc Welding Handbook, Goodheart-Willcox Company, Inc., Tinley Park, Illinois, 1996.

    Google Scholar 

  35. R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi, Continous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion, Mater. Sci. Eng. A, 396(2005), No. 1–2, p. 341.

    Article  Google Scholar 

  36. J.Q. Su, T.W. Nelson, and C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys, Mater. Sci. Eng. A, 405(2005), No. 1–2, p. 277.

    Article  Google Scholar 

  37. B. Bagheri, M. Abbasi, A. Abdollahzadeh, and H. Omidvar, Advanced approach to modify friction stir spot welding process, Met. Mater. Int., 26(2020), No. 10, p. 1562.

    Article  CAS  Google Scholar 

  38. C.I. Chang, C.J. Lee, and J.C. Huang, Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys, Scripta Mater., 51(2004), No. 6, p. 509.

    Article  CAS  Google Scholar 

  39. Z.Y. Ma, A.H. Feng, D.L. Chen, and J. Shen, Recent advances in friction stir welding/processing of aluminum alloys: Microstructural evolution and mechanical properties, Crit. Rev. Solid State Mater. Sci., 43(2018), No. 4, p. 269.

    Article  CAS  Google Scholar 

  40. D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformation in Metals and Alloys, 3rd ed., CRC Press, New York, 2009, p. 156.

    Google Scholar 

  41. G.E. Dieter and D. Bacon, Mechanical and Metallurgy, McGraw-Hill, London, 1988, p. 184.

    Google Scholar 

  42. M. Hajizadeh, S. Emami, and T. Saeid, Influence of welding speed on microstructure formation in friction-stir-welded 304 austenitic stainless steels, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1517.

    Article  CAS  Google Scholar 

  43. D. Wu, J. Shen, M.B. Zhou, L. Cheng, and J.X. Sang, Development of liquid-nitrogen-cooling friction stir spot welding for AZ31 magnesium alloy joints, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1169.

    Article  CAS  Google Scholar 

  44. A.H. Baghdadi, Z. Sajuri, N.F.M. Selamat, M.Z. Omar, Y. Miyashita, and A.H. Kokabi, Effect of intermetallic compounds on the fracture behavior of dissimilar friction stir welding joints of Mg and Al alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1285.

    Article  CAS  Google Scholar 

  45. B. Bagheri, M. Abbasi, A. Abdollahzadeh, and A.H. Kokabi, A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1133.

    Article  CAS  Google Scholar 

  46. W.D. Callister, Materials Science and Engineering: An Introduction, 7th ed., John Wiley & Sons, Inc., New Jersey, 2007.

    Google Scholar 

  47. Y.Z. Estrin, P.A. Zabrodin, I.S. Braude, T.V. Grigorova, N.V. Isaev, V.V. Pustovalov, V.S. Fomenko, and S.E. Shumilin, Low temperature plastic deformation of AZ31 magnesium alloy with different microstructures, Low Temp. Phys., 36(2010), No. 12, p. 1100.

    Article  CAS  Google Scholar 

  48. N. Hansen, The effect of grain size and strain on the tensile flow stress of aluminium at room temperature, Acta Metall., 25(1977), No. 8, p. 863.

    Article  CAS  Google Scholar 

  49. M. Naderi, M. Abbasi, and A. Saeed-Akbari, Enhanced mechanical properties of a hot-stamped advanced high-strength steel via tempering treatment, Metall. Mater. Trans. A, 44(2013), No. 4, p. 1852.

    Article  CAS  Google Scholar 

  50. H.R. Yuan, S.B. Lin, C.L. Yang, C.X. Fan, and S. Wang, Microstructure and porosity analysis in ultrasonic assisted TIG welding of 2014 aluminum alloy, China Weld., 20(2011), No. 1, p. 39.

    Google Scholar 

  51. B. Bagheri, M. Abbasi, and M. Dadaei, Mechanical behavior and microstructure of AA6061-T6 joints made by friction stir vibration welding, J. Mater. Eng. Perform., 29(2020), No. 2, p. 1165.

    Article  CAS  Google Scholar 

  52. N. Kumar, R.S. Mishra, and J.A. Baumann, Residual Stresses in Friction Stir Welding, Elsevier, Waltham, MA, 2014.

    Google Scholar 

  53. X.F. Lei, Y. Deng, Y.Y. Peng, Z.M. Yin, and G.F. Xu, Microstructure and properties of TIG/FSW welded joints of a new Al-Zn-Mg-Sc-Zr alloy, J. Mater. Eng. Perform., 22(2013), No. 9, p. 2723.

    Article  CAS  Google Scholar 

  54. B. Bagheri, A.A.M. Rizi, M. Abbasi, and M. Givi, Friction stir spot vibration welding: Improving the microstructure and mechanical properties of Al5083 joint, Metall. Microstruct. Anal., 8(2019), No. 5, p. 713.

    Article  CAS  Google Scholar 

  55. M. Abbasi, M.A. Shafaat, M. Ketabchi, D.F. Haghshenas, and M. Abbasi, Application of the GTN model to predict the forming limit diagram of IF-steel, J. Mech. Sci. Technol., 26(2012), No. 2, p. 345.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Amirkabir University of Technology for their support during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Bagheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, B., Abbasi, M. & Abdollahzadeh, A. Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study. Int J Miner Metall Mater 28, 450–461 (2021). https://doi.org/10.1007/s12613-020-2085-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2085-1

Keywords

Navigation