Skip to main content
Log in

Fast numerical approximation for the space-fractional semilinear parabolic equations on surfaces

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this work, a fast numerical method is considered to solve the space-fractional semilinear parabolic equations on closed surfaces. It is a challenge in that how to define the space fractional operator and corresponding semilinear parabolic equation with the energy functional defined on surface. To overcome it, using the local tangential space, we construct the spectral approximation for the space fractional operator on surfaces and apply the matrix transfer technique to avoid the difficulty of fractional nonlocality. The main advantage of the matrix transfer method is the completed diagonal representation of fractional operators from eigenvalue decomposition. Moreover, the time-discrete error estimates are presented as well as the energy stability. Various numerical examples are carried out to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Damor RS, Kumar S, Shukla AK (2014) Temperature distribution in living tissue with fractional bioheat model in thermal therapy. In: Proceedings of international conference on advances in tribology and engineering systems, lecture notes in mechanical engineering, springer India

  2. Damor RS, Kumar S, Shukla AK (2016) Solution of fractional bioheat equation in terms of fox’s h-function. SpringerPlus 5(1):111

    Article  Google Scholar 

  3. Pachepsky Y, Timlin D, Rawls W (2003) Generalized Richards’ equation to simulate water transport in unsaturated soils. J Hydrol 272(1–4):3–13

    Article  Google Scholar 

  4. Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional advection–dispersion equation. Water Resour Res 36(6):1403–1412

    Article  Google Scholar 

  5. Hanert E (2012) Front dynamics in a two-species competition model driven by Lévy flights. J Theor Biol 300:134–142

    Article  MathSciNet  MATH  Google Scholar 

  6. Brockmann D, David V, Gallardo AM (2009) Human mobility and spatial disease dynamics. Rev Nonlinear Dyn Complex 2:1–24

    MathSciNet  MATH  Google Scholar 

  7. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  MATH  Google Scholar 

  8. Barkai E, Metzler R, Klafter J (2000) From continuous time random walks to the fractional Fokker–Planck equation. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 61(1):132–138

    MathSciNet  Google Scholar 

  9. Zhao Y, Chen P, Bu W, Liu X, Tang Y (2017) Two mixed finite element methods for time-fractional diffusion equations. J Sci Comput 70(1):407–428

    Article  MathSciNet  MATH  Google Scholar 

  10. Wei L (2017) Analysis of a new finite difference/local discontinuous Galerkin method for the fractional diffusion-wave equation. Appl Math Comput 304:180–189

    MathSciNet  MATH  Google Scholar 

  11. Bu W, Tang Y, Yang J (2014) Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J Comput Phys 276:26–38

    Article  MathSciNet  MATH  Google Scholar 

  12. Burrage K, Hale N, Kay D (2012) An efficient implicit FEM scheme for fractional-in-space reaction–diffusion equations. SIAM J Sci Comput 34(4):A2145–A2172

    Article  MathSciNet  MATH  Google Scholar 

  13. Zheng Y, Li C, Zhao Z (2010) A note on the finite element method for the space-fractional advection diffusion equation. Comput Math Appl 59(5):1718–1726

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang Y, Ma J (2011) High-order finite element methods for time-fractional partial differential equations. J Comput Appl Math 235(11):3285–3290

    Article  MathSciNet  MATH  Google Scholar 

  15. Langlands T, Henry BI (2005) The accuracy and stability of an implicit solution method for the fractional diffusion equation. J Comput Phys 205(2):719–736

    Article  MathSciNet  MATH  Google Scholar 

  16. Pang HK, Sun HW (2016) Fourth order finite difference schemes for time-space fractional sub-diffusion equations. Comput Math Appl 71(6):1287–1302

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhai S, Wei L, Huang L, Feng X (2015) An efficient algorithm with high accuracy for time-space fractional heat equations. Numer Heat Transf Part B: Fundam 67(6):550–562

    Article  Google Scholar 

  18. Zhai S, Feng X (2016) A block-centered finite-difference method for the time-fractional diffusion equation on nonuniform grids. Numer Heat Transf Part B: Fundam 69(3):217–233

    Article  Google Scholar 

  19. Zhai S, Feng X (2016) Investigations on several compact ADI methods for the 2D time fractional diffusion equation. Numer Heat Transf Part B: Fundam 69(4):364–376

    Article  Google Scholar 

  20. Li X, Xu C (2010) The existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun Comput Phys 8:1016–1051

    Article  MathSciNet  MATH  Google Scholar 

  21. Ye X, Xu C (2013) Spectral optimization methods for the time fractional diffusion inverse problem. Numer Math: Theory Methods Appl 6(3):499–519

    MathSciNet  MATH  Google Scholar 

  22. Qiao Y, Zhai S, Feng X (2017) RBF-FD method for the high dimensional time fractional convection–diffusion equation. Int Commun Heat Mass Transf 89:230–240

    Article  Google Scholar 

  23. Qiao Y, Zhao J, Feng X (2019) A compact integrated RBF method for time fractional convection–diffusion–reaction equations. Comput Math Appl 77(9):2263–2278

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang Q, Turner I, Liu F, Iilić M (2011) Novel numerical methods for solving the time-space fractional diffusion equation in 2D. SIAM J Sci Comput 33(3):1159–1180

    Article  MathSciNet  Google Scholar 

  25. Ren J, Sun ZZ, Zhao X (2013) Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J Comput Phys 232(1):456–467

    Article  MathSciNet  MATH  Google Scholar 

  26. Hanert E, Piret C (2014) A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation. SIAM J Sci Comput 36(4):A1797–A1812

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu F, Zhuang P, Turner I, Anh V, Burrage K (2015) A semi-alternating direction method for a 2D fractional FitzHugh–Nagumo monodomain model on an approximate irregular domain. J Comput Phys 293:252–263

    Article  MathSciNet  MATH  Google Scholar 

  28. Aceto L, Novati P (2017) Rational approximation to the fractional Laplacian operator in reaction–diffusion problems. SIAM J Sci Comput 39(1):A214–A228

    Article  MathSciNet  MATH  Google Scholar 

  29. Lee G (2018) A second-order operator splitting Fourier spectral method for fractional-in-space reaction–diffusion equations. J Comput Appl Math 333:395–403

    Article  MathSciNet  MATH  Google Scholar 

  30. Yin B, Liu Y, Li H, He S (2019) Fast algorithm based on TT-M FE system for space fractional Allen–Cahn equations with smooth and non-smooth solutions. J Sci Comput 379:351–372

    MathSciNet  Google Scholar 

  31. Flyer N, Wright G (2009) A radial basis function method for the shallow water equations on a sphere. Proc Math Phys Eng Sci 465(2106):1949–1976

    MathSciNet  MATH  Google Scholar 

  32. Fuselier E, Wright G (2013) A high-order kernel method for diffusion and reaction–diffusion equations on surfaces. J Sci Comput 56(3):535–565

    Article  MathSciNet  MATH  Google Scholar 

  33. Mirzaei D (2018) A Petrov–Galerkin kernel approximation on the sphere. SIAM J Numer Anal 56(1):274–295

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhao S, Xiao X, Tan Z, Feng X (2018) Two types of spurious oscillations at layers diminishing methods for convection–diffusion–reaction equations on surface. Numer Heat Transf Part A: Appl 74(7):1387–1404

    Article  Google Scholar 

  35. Xiao X, Feng X, Yuan J (2017) The stabilized semi-implicit finite element method for the surface Allen–Cahn equation. Discret Contin Dyn Syst Ser B 22(7):2857–2877

    MathSciNet  MATH  Google Scholar 

  36. Xiao X, Wang K, Feng X (2018) A lifted local Galerkin method for solving the reaction–diffusion equations on implicit surfaces. Comput Phys Commun 231:107–113

    Article  MathSciNet  Google Scholar 

  37. Xiao X, Feng X, Yuan J (2018) The lumped mass finite element method for surface parabolic problems: error estimates and maximum principle. Comput Math Appl 76:488–507

    Article  MathSciNet  MATH  Google Scholar 

  38. Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach, Amsterdam

    MATH  Google Scholar 

  39. Iilić M, Liu F, Turner I, Anh V (2006) Numerical approximation of a fractional-in-space diffusion equation (II) with nonhomogeneous boundary conditions. Fract Calc Appl Anal 9(4):333–349

    MathSciNet  MATH  Google Scholar 

  40. Iilić M, Liu F, Turner I, Anh V (2005) Numerical approximation of a fractional-in-space diffusion equation (I). Fract Calc Appl Anal 8(3):323–341

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is in part supported by the Natural Science Foundation of Xinjiang Province (no. 2016D01C071, no. 2016D01C058) and the NSF of China (nos. 11671345,11861054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanyang Qiao or Lingzhi Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Qian, L. & Feng, X. Fast numerical approximation for the space-fractional semilinear parabolic equations on surfaces. Engineering with Computers 38 (Suppl 3), 1939–1953 (2022). https://doi.org/10.1007/s00366-021-01357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01357-z

Keywords

Mathematics Subject Classification

Navigation