Skip to main content
Log in

Self-assembly of amphiphilic Janus spheres using the lattice Boltzmann method

Setting up the lattice Boltzmann method for soft matter

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

We discuss the relevance of the lattice Boltzmann method (LBM) for soft matter alongside other simulation methods. We set up a popular problem of self-assembly of Janus spheres by combining native fluid and particle models in LBM with a simple amphiphilic pair potential. Thermal fluctuations and close contact corrections are also incorporated along with a novel periodic boundary condition for finite-sized 3D particles. Preliminary results of Janus sphere self-assembly are presented and compared with similar works in the literature. We also comment on the difficulties that LBM faces tackling such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

All authors make sure that all data and materials as well as software application or custom code support their published claims and comply with field standards.

Code availability

Custom Fortran code.

References

  1. Jones RA (2002) Soft condensed matter, vol 6. Oxford University Press, Oxford

    Google Scholar 

  2. Dünweg B, Ladd AJ (2009) Lattice Boltzmann simulations of soft matter systems. In: Advanced computer simulation approaches for soft matter sciences III. Springer, pp 89–166

  3. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44(247):335–341

    Article  MATH  Google Scholar 

  4. Zeng Q, Yu A, Lu G (2008) Multiscale modeling and simulation of polymer nanocomposites. Prog Polym Sci 33(2):191–269

    Article  Google Scholar 

  5. Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69(4):1352–1360

    Article  Google Scholar 

  6. De Corato M, Slot J, Hütter M, D’Avino G, Maffettone PL, Hulsen MA (2016) Finite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes. J Comput Phys 316:632–651

    Article  MathSciNet  MATH  Google Scholar 

  7. Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhys Lett) 19(3):155

    Article  Google Scholar 

  8. Malevanets A, Kapral R (1999) Mesoscopic model for solvent dynamics. J Chem Phys 110(17):8605–8613

    Article  Google Scholar 

  9. Landau LD, Lifshitz EM (1959) Fluid mechanics. Course of theoretical physics. Pergamon Press, Oxford

    Google Scholar 

  10. Atzberger PJ (2011) Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations. J Comput Phys 230(8):2821–2837

    Article  MathSciNet  MATH  Google Scholar 

  11. Sharma N, Patankar NA (2004) Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations. J Comput Phys 201(2):466–486

    Article  MATH  Google Scholar 

  12. Patankar NA (2002) Direct numerical simulation of moving charged, flexible bodies with thermal fluctuations. In: Technical proceedings of the 2002 international conference on computational nanoscience and nanotechnology, nano science and technology institute, vol 2, pp 93–96

  13. Serrano M, Espanol P (2001) Thermodynamically consistent mesoscopic fluid particle model. Phys Rev E 64(4):046,115

    Article  Google Scholar 

  14. Espanol P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67(2):026,705

    Article  Google Scholar 

  15. Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier–Stokes equation. Phys Rev Lett 56(14):1505

    Article  Google Scholar 

  16. Espanol P, Warren PB (2017) Perspective: dissipative particle dynamics. J Chem Phys 146(15):150,901

    Article  Google Scholar 

  17. Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen E (2016) The lattice Boltzmann method: principles and practice. Graduate texts in physics. Springer, Berlin

    MATH  Google Scholar 

  18. Rosenthal G, Gubbins KE, Klapp SH (2012) Self-assembly of model amphiphilic Janus particles. J Chem Phys 136(17):174,901

    Article  Google Scholar 

  19. Rosenthal G, Klapp SH (2012) Micelle and bilayer formation of amphiphilic Janus particles in a slit-pore. Int J Mol Sci 13(8):9431–9446

    Article  Google Scholar 

  20. Chen Q, Whitmer JK, Jiang S, Bae SC, Luijten E, Granick S (2011) Supracolloidal reaction kinetics of Janus spheres. Science 331(6014):199–202

    Article  Google Scholar 

  21. Hong L, Cacciuto A, Luijten E, Granick S (2008) Clusters of amphiphilic colloidal spheres. Langmuir 24(3):621–625

    Article  Google Scholar 

  22. Sciortino F, Giacometti A, Pastore G (2009) Phase diagram of Janus particles. Phys Rev Lett 103(23):237,801

    Article  Google Scholar 

  23. Erdmann T, Kröger M, Hess S (2003) Phase behavior and structure of Janus fluids. Phys Rev E 67(4):041,209

    Article  Google Scholar 

  24. Kobayashi Y, Arai N (2015) Self-assembly of Janus nanoparticles with a hydrophobic hemisphere in nanotubes. Soft Matter 12(2):378–385

    Article  Google Scholar 

  25. Kobayashi Y, Arai N (2017) Self-assembly and viscosity behavior of Janus nanoparticles in nanotube flow. Langmuir 33(3):736–743

    Article  Google Scholar 

  26. Arai N, Yasuoka K, Zeng XC (2012) Nanochannel with uniform and Janus surfaces: shear thinning and thickening in surfactant solution. Langmuir 28(5):2866–2872

    Article  Google Scholar 

  27. Bianchi E, Panagiotopoulos AZ, Nikoubashman A (2015) Self-assembly of Janus particles under shear. Soft Matter 11(19):3767–3771

    Article  Google Scholar 

  28. Kobayashi Y, Arai N, Nikoubashman A (2020) Structure and dynamics of amphiphilic Janus spheres and spherocylinders under shear. Soft Matter 16:476–486

    Article  Google Scholar 

  29. Rosenthal G, Klapp SH (2011) Ordering of amphiphilic Janus particles at planar walls: a density functional study. J Chem Phys 134(15):154,707

    Article  Google Scholar 

  30. Alarcon F, Navarro-Argemí E, Valeriani C, Pagonabarraga I (2019) Orientational order and morphology of clusters of self-assembled Janus swimmers. Phys Rev E 99(6):062,602

    Article  Google Scholar 

  31. Shen Z, Würger A, Lintuvuori JS (2019) Hydrodynamic self-assembly of active colloids: chiral spinners and dynamic crystals. Soft Matter 15(7):1508–1521

    Article  Google Scholar 

  32. Ladd AJ (1994) Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285–309

    Article  MathSciNet  MATH  Google Scholar 

  33. Galindo-Torres S (2013) A coupled discrete element lattice Boltzmann method for the simulation of fluid-solid interaction with particles of general shapes. Comput Methods Appl Mech Eng 265:107–119

    Article  MathSciNet  MATH  Google Scholar 

  34. Xie Q, Günther F, Harting J (2016) Mesoscale simulations of anisotropic particles at fluid-fluid interfaces. In: High performance computing in science and engineering’ 15. Springer, Berlin, pp 565–577

  35. Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511

    Article  MATH  Google Scholar 

  36. d’Humieres D (1992) Generalized lattice-Boltzmann equations. Rarefied gas dynamics

  37. Chun B, Ladd A (2007) Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Phys Rev E 75(6):066,705

    Article  MathSciNet  Google Scholar 

  38. d’Humieres D (2002) Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 360(1792):437–451

    Article  MathSciNet  MATH  Google Scholar 

  39. Schiller UD (2008) Thermal fluctuations and boundary conditions in the lattice Boltzmann method. PhD thesis, Johannes Gutenberg Universität Mainz

  40. Adhikari R, Stratford K, Cates M, Wagner A (2005) Fluctuating lattice Boltzmann. EPL (Europhys Lett) 71(3):473

    Article  Google Scholar 

  41. Aidun CK, Lu Y (1995) Lattice Boltzmann simulation of solid particles suspended in fluid. J Stat Phys 81(1–2):49–61

    Article  MATH  Google Scholar 

  42. Ladd A, Verberg R (2001) Lattice-Boltzmann simulations of particle-fluid suspensions. J Stat Phys 104(5–6):1191–1251

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang M, Feng Y, Wang Y, Zhao T (2017) Periodic boundary conditions of discrete element method-lattice Boltzmann method for fluid-particle coupling. Granul Matter 19(3):43

    Article  Google Scholar 

  44. Ding EJ, Aidun CK (2003) Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact. J Stat Phys 112(3–4):685–708

    Article  MATH  Google Scholar 

  45. Nguyen NQ, Ladd A (2002) Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys Rev E 66(4):046,708

    Article  Google Scholar 

  46. Aidun CK, Clausen JR (2010) Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech 42:439–472

    Article  MathSciNet  MATH  Google Scholar 

  47. Rosenthal G (2012) Theory and computer simulations of amphiphilic Janus particles. PhD thesis, Technical University of Berlin

  48. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, vol 1. Elsevier, Amsterdam

    MATH  Google Scholar 

  49. Murray R, Li Z, Sastry S, Sastry S (1994) A mathematical introduction to robotic manipulation. Taylor & Francis, Milton Park

    MATH  Google Scholar 

  50. Pathria R, Beale P (1996) Statistical mechanics. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  51. Allen M, Tildesley D (1989) Computer simulation of liquids. Oxford Science Publ, Clarendon Press, Oxford

    MATH  Google Scholar 

  52. Feng ZG, Michaelides EE (2004) The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. J Comput Phys 195(2):602–628

    Article  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahni Ray.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 1085 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, G., Ray, B. & Sarkar, J. Self-assembly of amphiphilic Janus spheres using the lattice Boltzmann method. Comp. Part. Mech. 9, 67–83 (2022). https://doi.org/10.1007/s40571-021-00394-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00394-1

Keywords

Navigation