Skip to main content

Advertisement

Log in

Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Oral squamous cell carcinoma (OSCC) is a malignant oral cavity neoplasm that affects many people, especially in developing countries. Despite several advances that have been made in diagnosis and treatment, the morbidity and mortality rates due to OSCC remain high. Accumulating evidence indicates that aberrant activation of cellular signaling pathways, such as the Notch, Wnt and Hedgehog pathways, occurs during the development and metastasis of OSCC. In this review, we have articulated the roles of the Notch, Wnt and Hedgehog signaling pathways in OSCC and their crosstalk during tumor development and progression. We have also examined possible interactions and associations between these pathways and treatment regimens that could be employed to effectively tackle OSCC and/or prevent its recurrence.

Conclusions

Activation of the Notch signaling pathway upregulates the expression of several genes, including c-Myc, β-catenin, NF-κB and Shh. Associations between the Notch signaling pathway and other pathways have been shown to enhance OSCC tumor aggressiveness. Crosstalk between these pathways supports the maintenance of cancer stem cells (CSCs) and regulates OSCC cell motility. Thus, application of compounds that block these pathways may be a valid strategy to treat OSCC. Such compounds have already been employed in other types of cancer and could be repurposed for OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Ali, B. Sabiha, H. Ullah, S. Adnan, A. Ali, S.S. Ali, Genetic etiology of oral cancer. Oral Oncol. 70, 23–28 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. J.D. Mcdowell, An overview of epidemiology and common risk factors for oral squamous cell carcinoma. Otolaryngol. Clin. North Am. 39, 277–294 (2006)

    Article  PubMed  Google Scholar 

  3. J.A. Nemes, L. Deli, Z. Nemes, I.J. Márton, Expression of p16 INK4A, p53, and Rb proteins are independent from the presence of human papillomavirus genes in oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 102, 344–352 (2006)

  4. J. Rautava, M. Luukkaa, K. Heikinheimo, J. Alin, R. Grenman, R.-P. Happonen, Squamous cell carcinomas arising from different types of oral epithelia differ in their tumor and patient characteristics and survival. Oral Oncol. 43, 911–919 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. H. Mortazavi, Y. Safi, M. Baharvand, S. Rahmani, Diagnostic features of common oral ulcerative lesions: An updated decision tree. Int. J. Dent. 2016, 7278925 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  6. A.C. Chi, T.A. Day, B.W. Neville, Oral cavity and oropharyngeal squamous cell carcinoma -an update. CA Cancer J. Clin. 65, 401–421 (2015)

    Article  PubMed  Google Scholar 

  7. L. Barnes, J.W. Eveson, P. Reichart, D. Sidransky, (eds) World health organization classification of tumours. pathology and genetics of head and neck tumours. (IARC Press, Lyon, 2005) pp 163–175

  8. M. Umeda, S. Yokoo, Y. Take, A. Omori, K. Nakanishi, K. Shimada, Lymoh node metastasis in squamous cell carcinoma of the oral cavity: correlation between histologic features and the prevalence of metastasis. Head Neck 14, 263–272 (1992)

    Article  CAS  PubMed  Google Scholar 

  9. G.F. Huber, L. Züllig, A. Soltermann, M. Roessle, N. Graf, S.K. Haerle, G. Studer, W. Jochum, H. Moch, S.J. Stoeckli, Down regulation of E-Cadherin (ECAD) - a predictor for occult metastatic disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and oropharynx. BMC Cancer 11, 1–8 (2011)

    Article  Google Scholar 

  10. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, M.J. Thun, C. Statistics, 2008. CA Cancer J. Clin. 58, 71–96 (2008)

  11. J.K. Nagpal, B.R. Das, Oral cancer: reviewing the present understanding of its molecular mechanism and exploring the future directions for its effective management. Oral Oncol. 39, 213–221 (2003)

  12. O. Dreesen, A.H. Brivanlou, Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. Rep. 3, 7–17 (2007)

    Article  CAS  Google Scholar 

  13. J. Lei, J. Ma, Q. Ma, X. Li, H. Liu, Q. Xu, W. Duan, Q. Sun, J. Xu, Z. Wu, E. Wu, Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand-independent manner. Mol. Cancer 12, 66 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. J. Zhang, Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy. Future Oncol. 6, 587–603 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. L. Miele, H. Miao, B.J. Nickoloff, NOTCH signaling as a novel cancer therapeutic target. Curr. Cancer Drug Targets 6, 313–323 (2006)

    Article  CAS  PubMed  Google Scholar 

  16. M. Schwab (ed.), Encyclopedia of Cancer (Springer-Verlag, Berlin Heidelberg, 2017)

  17. S. Artavanis-tsakonas, M.D. Rand, R.J. Lake, Notch signaling: Cell fate control and signal integration in development. JSTOR J. 284, 770–777 (1999)

    CAS  Google Scholar 

  18. I. Espinoza, L. Miele, Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells. Cancer Lett. 341, 1–5 (2013)

    Article  Google Scholar 

  19. S. Zanotti, E. Canalis, Notch signaling and the skeleton. Endocrine Rev. 37, 223–253 (2016)

    Article  CAS  Google Scholar 

  20. C. Lobry, P. Oh, M.R. Mansour, A.T. Look, I. Aifantis, Notch signaling: switching an oncogene to a tumor suppressor. Blood 123, 2451–2460 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. C.R. Chillakuri, D. Sheppard, S.M. Lea, P.A. Handford, Seminars in cell & developmental biology Notch receptor – ligand binding and activation: Insights from molecular studies. Semin. Cell. Dev. Biol. 23, 421–428 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. I. Rebay, R.J. Fleming, R.G. Fehon, L. Cherbas, P. Cherbas, S. Artavanis-Tsakonas, Specific EGF repeats of Notch mediate interactions with delta and serrate: Implications for Notch as a multifunctional receptor. Cell 67, 687–699 (1991)

    Article  CAS  PubMed  Google Scholar 

  23. M.B. Andrawes, X. Xu, H. Liu, S.B. Ficarro, J.A. Marto, J.C. Aster, S.C. Blacklow, Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. J. Biochem. 288, 25477–25489 (2013)

    CAS  Google Scholar 

  24. A.L. Parks, J.R. Stout, S.B. Shepard, K.M. Klueg, A.A. Santos, T.R. Dos, Parody, M. Vaskova, M.A.T. Muskavitch, Structure–function analysis of Delta trafficking, receptor binding and signaling in Drosophila. Genetics 174, 1947–1961 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. K. Shimizu, S. Chiba, K. Kumano, N. Hosoya, T. Takahashi, Y. Kanda, Y. Hamada, Y. Yazaki, H. Hirai, Mouse Jagged1 physically interacts with Notch2 and other. J. Biochem. 274, 32961–32969 (1999)

    CAS  Google Scholar 

  26. Ma.X.G. Ilagan, R. Kopan, Notch signaling pathway. Cell 128, 1246.e1–1246.e2 (2007)

    Article  Google Scholar 

  27. Y.-Y. Hu, M.-H. Zheng, R. Zhang, Y.-M. Liang, H. Han, Notch signaling pathway and cancer metastasis. Adv. Exp. Med. Biol. 727, 186–198 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. S.J. Bray, Notch signalling: a simple pathway becomes complex. Nature Rev. 7, 678–689 (2006)

    Article  CAS  Google Scholar 

  29. M.E. Fortini, γ-secretase-mediated proteolysis in cell-surface-receptor signalling. Mol. Cell. Biol. 3, 673–684 (2002)

    CAS  Google Scholar 

  30. D. Selkoe, R. Kopan, Notch and presenilin: Regulated intramembrane proteolysis links development and degeneration. Ann. Rev. Neurosci. 26, 565–597 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. T. Borggrefe, F. Oswald, The Notch signaling pathway: Transcriptional regulation at Notch target genes. Cell. Mol. Life Sci. 66, 1631–1646 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. M. Katoh, M. Katoh, Identification and characterization of human HES2, HES3, and HES5 genes in silico. Int. J. Oncol. 25, 529–534 (2004)

    CAS  PubMed  Google Scholar 

  33. T. Iso, L. Kedes, Y. Hamamori, HES and HERP families: Multiple effectors of the Notch signaling pathway. J. Cell. Physiol. 194, 237–255 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. M. Eiraku, Y. Hirata, H. Takeshima, T. Hirano, M. Kengaku, Delta/Notch-like epidermal growth factor (EGF)-related receptor, a novel EGF-like repeat-containing protein targeted to dendrites of developing and adult central nervous system neurons. J. Biochem. 277, 25400–25407 (2002)

    CAS  Google Scholar 

  35. X. Cui, Q. Hu, M. Tekaya, Y. Shimoda, B. Ang, D. Nie, L. Sun, W. Hu, M. Karsak, T. Duka, Y. Takeda, L. Ou, G.S. Dawe, F. Yu, S. Ahmed, L. Jin, M. Schachner, K. Watanabe, Y. Arsenijevic, Z. Xiao, NB-3/Notch1 pathway via Deltex1 promotes neural progenitor cell differentiation into oligodendrocytes. J. Biol. Chem. 279, 25858–25865 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. R. Sanalkumar, S.B. Dhanesh, J. James, Non-canonical activation of Notch signaling/target genes in vertebrates. Cell. Mol. Life Sci. 67, 2957–2968 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. C.Y. Logan, R. Nusse, The Wnt signaling pathway in development and disease. Ann. Rev. Cell Dev. Biol. 20, 781–810 (2004)

    Article  CAS  Google Scholar 

  38. Z. Steinhart, S. Angers, Wnt signaling in development and tissue homeostasis. Development 145, 1–8 (2018)

    Article  Google Scholar 

  39. J. Wang, T. Sinha, A. Wynshaw-boris, Wnt signaling in mammalian development: Lessons from mouse genetics. Cold Spring Harb. Perspect. Biol. 4, 1–16 (2012)

    Article  Google Scholar 

  40. S. Tanaka, K. Terada, T. Nohno, Canonical Wnt signaling is involved in switching from cell proliferation to myogenic differentiation of mouse myoblast cells Canonical Wnt signaling is involved in switching from cell proliferation to myogenic differentiation of mouse myoblast cells. J. Mol. Signal. 6, 12 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Y. Komiya, R. Habas, Wnt signal transduction pathways. Organogenesis 4, 68–75 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  42. B.T. MacDonald, K. Tamai, X. He, Wnt/B-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. C. Niehrs, The complex world of WNT receptor signalling. Nature Rev. 13, 767–779 (2012)

    Article  CAS  Google Scholar 

  44. C. Liu, Y. Kato, Z. Zhang, V.M. Do, B.A. Yankner, X. He, β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc. Natl. Acad. Sci. USA 96, 6273–6278 (1999)

  45. H. Aberle, A. Bauer, A. Kispert, R. Kemler, β-catenin is a target for the ubiquitin proteasome pathway. EMBO J. 16, 3797–3804 (1997)

    Article  CAS  PubMed  Google Scholar 

  46. D. Hrckulak, M. Kolar, H. Strnad, V. Korinek, TCF/LEF Transcription factors: An update from the internet resources. Cancers 8, 1–18 (2016)

    Article  Google Scholar 

  47. A. Bahrami, F. Amerizadeh, S. Shahidsales, M. Khazaei, M. Ghayour-mobarhan, H.R. Sadeghnia, M. Maftouh, S.M. Hassanian, A. Avan, Therapeutic potential of targeting Wnt/B-catenin pathway in treatment of colorectal cancer: Rational and progress. J. Cell. Biochem. 118, 1979–1983 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. Q. Wang, Y. Zhou, P. Rychahou, J.W. Harris, Y.Y. Zaytseva, J. Liu, C. Wang, H.L. Weiss, C. Liu, E.Y. Lee, B.M. Evers, Deptor is a novel target of Wnt/β-catenin/c-Myc and contributes to colorectal cancer cell growth. Cancer Res. 78, 3163–3175 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J.L. Stamos, W.I. Weis, The B-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 5, 1–16 (2013)

    Article  Google Scholar 

  50. L.E. Olson, J. Tollkuhn, C. Scafoglio, A. Krones, J. Zhang, K.A. Ohgi, W. Wu, M.M. Taketo, R. Kemler, R. Grosschedl, D. Rose, X. Li, M.G. Rosenfeld, Homeodomain-mediated B-catenin-dependent switching events dictate cell-lineage determination. Cell 125, 593–605 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. J.R.K. Seifert, M. Mlodzik, Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nature Rev. Genet. 8, 126–138 (2007)

    Article  CAS  PubMed  Google Scholar 

  52. C.R. Vinson, P.N. Adler, Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 329, 549–551 (1987)

    Article  CAS  PubMed  Google Scholar 

  53. M. Mlodzik, Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation ? Trends Genet. 18, 564–571 (2002)

    Article  CAS  PubMed  Google Scholar 

  54. Y. Wang, J. Nathans, Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134, 647–658 (2007)

    Article  CAS  PubMed  Google Scholar 

  55. A.M. Daulat, J. Borg, Wnt/planar cell polarity signaling: New opportunities for cancer treatment. Trends Cancer 3, 113–125 (2017)

    Article  CAS  PubMed  Google Scholar 

  56. I. Oishi, H. Suzuki, N. Onishi, R. Takada, S. Kani, H. Shibuya, S. Takada, Y. Minami, The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8, 645–654 (2003)

    Article  CAS  Google Scholar 

  57. N. Sasai, Y. Nakazawa, T. Haraguchi, Y. Sasai, The neurotrophin-receptor-related protein NRH1 is essential for convergent extension movements. Nat. Cell Biol. 6, 741–748 (2004)

    Article  CAS  PubMed  Google Scholar 

  58. M. Nishita, S.K. Yoo, A. Kikuchi, N. Sougawa, Y. Ohta, S. Takada, A. Kikuchi, Y. Minami, Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J. Cell Biol. 175, 555–562 (2006)

    Article  CAS  PubMed  Google Scholar 

  59. W. Lu, V. Yamamoto, B. Ortega, D. Baltimore, Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119, 97–108 (2004)

    Article  CAS  PubMed  Google Scholar 

  60. J.B. Wallingford, R. Habas, The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132, 4421–4436 (2005)

    Article  CAS  PubMed  Google Scholar 

  61. M. Sebbagh, J. Borg, Insight into planar cell polarity. Exp. Cell Res. 328, 284–295 (2014)

    Article  CAS  PubMed  Google Scholar 

  62. A.D. Kohn, R.T. Moon, Wnt and calcium signaling: B-Catenin-independent pathways. Cell Calcium 38, 439–446 (2005)

    Article  CAS  PubMed  Google Scholar 

  63. D.C. Slusarski, Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev. Biol. 307, 1–13 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. A. Mcquate, E. Latorre-esteves, A. Barria, A Wnt/calcium signaling cascade regulates neuronal excitability and trafficking of NMDARs. Cell Rep. 21, 60–69 (2017)

    Article  CAS  PubMed  Google Scholar 

  65. D.C. Slusarski, V.G. Corces, R.T. Moon, Interaction of Wnt and a Frizzled homologue triggers phosphatidylinositol signalling. Nature 390, 410–413 (1997)

    Article  CAS  PubMed  Google Scholar 

  66. S.K. Dissanayake, A.T. Weeraratna, Detecting PKC phosphorylation as part of the Wnt/calcium pathway in cutaneous melanoma. Methods Mol. Biol. 468, 1–16 (2008)

    Google Scholar 

  67. L.C. Sheldahl, D.C. Slusarski, P. Pandur, J.R. Miller, M. Kühl, R.T. Moon, Dishevelled activates Ca2 + flux, PKC, and CamKII in vertebrate embryos. J. Cell Biol. 161, 769–777 (2003)

    Article  CAS  PubMed  Google Scholar 

  68. A.E. Bale, Hedgehog signaling and human disease. Ann. Rev. Gen. Hum. Genet. 3, 47–65 (2002)

    Article  CAS  Google Scholar 

  69. J.A. Porter, K.E. Young, P.A. Beachy, Cholesterol modification of Hedgehog signaling proteins in animal development. Science 274, 255–258 (1996)

    Article  CAS  PubMed  Google Scholar 

  70. R.B. Pepinsky, C. Zeng, D. Wen, P. Rayhorn, D.P. Baker, K.P. Williams, S.A. Bixler, C.M. Ambrose, E.A. Garber, K. Miatkowski, F.R. Taylor, E.A. Wang, A. Galdes, Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biochem. 273, 14037–14045 (1998)

    CAS  Google Scholar 

  71. M. Varjosalo, J. Taipale, Hedgehog signaling. J. Cell Sci. 120, 3–6 (2007)

    Article  CAS  PubMed  Google Scholar 

  72. E. Mart, P. Bovolenta, Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci. 25, 89–96 (2002)

    Article  Google Scholar 

  73. A. Abeliovich, R. Hammond, Midbrain dopamine neuron differentiation: Factors and fates. Dev. Biol. 304, 447–454 (2007)

    Article  CAS  PubMed  Google Scholar 

  74. W.A.O. Hara, W.J. Azar, R.R. Behringer, M.B. Renfree, A.J. Pask, Desert hedgehog is a mammal-specific gene expressed during testicular and ovarian development in a marsupial. BMC Dev. Biol. 11, 1–12 (2011)

    Article  Google Scholar 

  75. L.P. Lai, J. Mitchell, I. Hedgehog, Its roles and regulation in endochondral bone development. J. Cell. Biochem. 96, 1163–1173 (2005)

    Article  CAS  PubMed  Google Scholar 

  76. B. St-jacques, M. Hammerschmidt, A.P. Mcmahon, Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072–2086 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. F. Long, U. Chung, S. Ohba, J. Mcmahon, H.M. Kronenberg, Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development 131, 1309–1318 (2004)

    Article  CAS  PubMed  Google Scholar 

  78. A. Ruiz-gómez, C. Molnar, H. Holguín, F. Mayor, J.F. Celis, De, The cell biology of Smo signalling and its relationships with GPCRs. Biochim. Biophys. Acta 1768, 901–912 (2007)

    Article  PubMed  Google Scholar 

  79. M.A. Stegman, J.A. Goetz, M. Ascano, S.K. Ogden, K.E. Nybakken, D.J. Robbins, The kinesin-related protein Costal2 associates with membranes in a Hedgehog-sensitive, Smoothened-independent manner. J. Biol. Chem. 279, 7064–7071 (2004)

    Article  CAS  PubMed  Google Scholar 

  80. R.A. Aikin, K.L. Ayers, P.P. Thérond, The role of kinases in the Hedgehog signalling pathway. EMBO Rep. 9, 330–336 (2008)

    Article  CAS  PubMed  Google Scholar 

  81. E.G. Huntzicker, I.S. Estay, H. Zhen, L.A. Lokteva, P.K. Jackson, A.E. Oro, Dual degradation signals control Gli protein stability and tumor formation. Genes Dev. 20, 276–281 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. J. Jiang, Regulation of Hh/Gli signaling by dual ubiquitin pathways. Cell Cycle 5, 2457–2463 (2006)

    Article  CAS  PubMed  Google Scholar 

  83. M.F.S.D. Rodrigues, L. Miguita, N.P.D.E. Andrade, D. Heguedusch, C.O. Rodini, R.A. Moyses, T.N. Toporcov, R.R. Gama, E.E. Tajara, F.D. Nunes, GLI3 knockdown decreases stemness, cell proliferation and invasion in oral squamous cell carcinoma. Int. J. Oncol. 53, 2458–2472 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. D. Jenkins, Hedgehog signalling: Emerging evidence for non-canonical pathways. Cell. Signal 21, 1023–1034 (2009)

    Article  CAS  PubMed  Google Scholar 

  85. G.B. Carballo, J.R. Honorato, G. Pinto, F. Lopes, T. De, Cristina, L. Sampaio, De, A highlight on Sonic hedgehog pathway. Cell Comm. Signal. 16, 1–15 (2018)

    Article  Google Scholar 

  86. K.C. Corbit, P. Aanstad, V. Singla, A.R. Norman, D.Y.R. Stainier, J.F. Reiter, Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005)

    Article  CAS  PubMed  Google Scholar 

  87. A.M. Skoda, D. Simovic, V. Karin, V. Kardum, S. Vranic, L. Serman, The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosnian J. Basic Med. Sci. 18, 8–20 (2018)

    Article  CAS  Google Scholar 

  88. S. Pietrobono, S. Gagliardi, B. Stecca, Non-canonical Hedgehog signaling pathway in cancer: Activation of GLI transcription factors beyond Smoothened. Front. Genet. 10, 1–20 (2019)

    Article  Google Scholar 

  89. H. Hijioka, T. Setoguchi, A. Miyawaki, H. Gao, T. Ishida, S. Komiya, N. Nakamura, Upregulation of Notch pathway molecules in oral squamous cell carcinoma. Int. J. Oncol. 36, 817–822 (2010)

    CAS  PubMed  Google Scholar 

  90. T. Ishida, H. Hijioka, K. Kume, A. Miyawaki, N. Nakamura, Notch signaling induces EMT in OSCC cell lines in a hypoxic environment. Oncol. Lett. 5, 1201–1206 (2013)

    Article  Google Scholar 

  91. T. Osathanon, N. Nowwarote, P. Pavasant, Expression and influence of Notch signaling in oral squamous cell carcinoma. J. Oral Sci. 58, 283–294 (2016)

    Article  CAS  PubMed  Google Scholar 

  92. X. Ding, Y. Zheng, Z. Wang, W. Zhang, Y. Dong, W. Chen, J. Li, W. Chu, W. Zhang, Y. Zhong, L. Mao, X. Song, Y. Wu, Expression and oncogenic properties of membranous Notch1 in oral leukoplakia and oral squamous cell carcinoma. Oncol. Rep. 39, 2584–2594 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  93. J.P. Joseph, M.K. Harishankar, A.A. Pillai, A. Devi, Hypoxia induced EMT: A review on the mechanism of tumor progression and metastasis in OSCC. Oral Oncol. 80, 23–32 (2018)

    Article  CAS  PubMed  Google Scholar 

  94. R. Yoshida, M. Nagata, H. Nakayama, K. Niimori-kita, W. Hassan, T. Tanaka, M. Shinohara, T. Ito, The pathological significance of Notch1 in oral squamous cell carcinoma. Lab. Invest. 93, 1068–1081 (2013)

    Article  CAS  PubMed  Google Scholar 

  95. X. Song, R. Xia, J. Li, Z. Long, H. Ren, W. Chen, L. Mao, Common and complex Notch1 mutations in Chinese oral squamous cell carcinoma. Clin. Cancer Res. 20, 701–711 (2014)

    Article  CAS  PubMed  Google Scholar 

  96. E. Izumchenko, K. Sun, S. Jones, M. Brait, N. Agrawal, W. Koch, C.L. Mccord, D.R. Riley, S.V. Angiuoli, V.E. Velculescu, W. Jiang, D. Sidransky, Notch1 mutations are drivers of oral tumorigenesis. Cancer Prev. Res. 8, 277–287 (2015)

    Article  CAS  Google Scholar 

  97. C.R. Pickering, J. Zhang, S.Y. Yoo, L. Bengtsson, E. Cortez, T. Xie, D. Zhang, W. Chung, P.A. Zweidler-mckay, X. Wu, A.K. El-naggar, J.N. Weinstein, M.J. Frederick, Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 3, 1–21 (2013)

    Article  Google Scholar 

  98. S.H. Lee, H.S. Hong, Z.X. Liu, R.H. Kim, M.K. Kang, N.-H. Park, K.-H. Shin, TNFa enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem. Biophys. Res. Comm. 424, 58–64 (2012)

    Article  CAS  PubMed  Google Scholar 

  99. K. Kayamori, K.-I. Katsube, K. Sakamoto, Y. Ohyama, H. Hirai, A. Yukimori, Y. Ohata, T. Akashi, M. Saitoh, K. Harada, H. Harada, A. Yamaguchi, NOTCH3 is Iiduced in cancer-associated fibroblasts and promotes angiogenesis in oral squamous cell carcinoma. PLoS One 11, e0154112 (2016)

  100. H. Mk, S. Prince, A.M. Mohan, K.V. Krishnan, A. Devi, Association of Notch4 with metastasis in human oral squamous cell carcinoma. Life Sci. 156, 38–46 (2016)

    Article  CAS  PubMed  Google Scholar 

  101. B. Li, M. Chen, M. Lu, J. Xin-Xiang, P. Meng-Xiong, M. Jun-Wu, Glutaredoxin 3 promotes migration and invasion via the Notch signalling pathway in oral squamous cell carcinoma. Free Radic. Res. 52, 390–401 (2018)

    Article  CAS  PubMed  Google Scholar 

  102. J. Zhang, G. Zheng, L. Zhou, P. Li, M. Yun, Q. Shi, T. Wang, X. Wu, Notch signalling induces epithelial–mesenchymal transition to promote metastasis in oral squamous cell carcinoma. Int. J. Mol. Med. 42, 2276–2284 (2018)

    CAS  PubMed  Google Scholar 

  103. W. Shi, F. Li, S. Li, J. Wang, Q. Wang, X. Yan, Q. Zhang, L. Chai, M. Li, Increased DCLK1 correlates with the malignant status and poor outcome in malignant tumors: a meta-analysis. Oncotarget 8, 100545–100557 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  104. E.C. Broner, T. Subbannayya, A. Zhavoronkov, M. Korzinkin, A. Artemov, I. Ozerov, I. Sloma, D. Sidransky, A. Chatterjee, E. Izumchenko, Abstract 3443: Doublecortin-like kinase 1 (DCLK1) is novel Notch pathway signaling regulator in HNSCC. Cancer Res. 79, 3443–3443 (2019)

    Article  Google Scholar 

  105. T. Zhan, N. Rindtorff, M. Boutros, Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017)

    Article  CAS  PubMed  Google Scholar 

  106. S. Iwai, A. Yonekawa, C. Harada, M. Hamada, W. Katagiri, M. Nakazawa, Y. Yura, Involvement of the Wnt-β-catenin pathway in invasion and migration of oral squamous carcinoma cells. Int. J. Oncol. 37, 1095–1103 (2010)

    Article  CAS  PubMed  Google Scholar 

  107. J. Nwanze, C. Cohen, A.C. Schmitt, M.T. Siddiqui, β-Catenin expression in oropharyngeal squamous cell carcinomas: Comparison and correlation with p16 and human papillomavirus in situ hybridization. Acta Cytol. 59, 479–484 (2016)

    Article  Google Scholar 

  108. F. Mahomed, M. Altini, S. Meer, Altered E-cadherin/B-catenin expression in oral squamous carcinoma with and without nodal metastasis. Oral Dis. 13, 386–392 (2007)

    Article  CAS  PubMed  Google Scholar 

  109. M. Uraguchi, M. Morikawa, M. Shirakawa, K. Sanada, K. Imai, Activation of WNT family expression and signaling in squamous cell carcinomas. J. Dent. Res. 83, 327–332 (2004)

    Article  CAS  PubMed  Google Scholar 

  110. S. Iwai, ÆW. Katagiri, ÆC. Kong, Mutations of the APC, beta-catenin, and axin1 genes and cytoplasmic accumulation of beta-catenin in oral squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 131, 773–782 (2005)

    Article  CAS  PubMed  Google Scholar 

  111. Z. Cui, Y. Cui, S. Yang, G. Luo, Y. Wang, Y. Lou, X. Sun, KLK4 silencing inhibits the growth of oral squamous cell carcinoma through Wnt/β-catenin signaling pathway: KLK4 silencing inhibits OSCC cell growth. Cell Biol. Int. 41, 392–404 (2017)

    Article  CAS  PubMed  Google Scholar 

  112. Y. Bai, J. Sha, T. Kanno, The role of carcinogenesis-related biomarkers in the Wnt pathway and their effects on epithelial–mesenchymal transition (EMT) in oral squamous cell carcinoma. Cancers 12, 55 (2020)

    Article  Google Scholar 

  113. J. Paluszczak, The significance of the dysregulation of canonical Wnt signaling in head and neck squamous cell carcinomas. Cells 9, 723 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  114. J.K. Strzelczyk, Ł Krakowczyk, A.J. Owczarek, Methylation status of SFRP1, SFRP2, RASSF1A, RARβ and DAPK1 genes in patients with oral squamous cell carcinoma. Arch. Oral Biol. 98, 265–272 (2019)

    Article  CAS  PubMed  Google Scholar 

  115. S. Liang, S. Zhang, P. Wang, C. Yang, C. Shang, J. Yang, J. Wang, LncRNA, TUG1 regulates the oral squamous cell carcinoma progression possibly via interacting with Wnt/β-catenin signaling. Gene 608, 49–57 (2017)

    Article  CAS  PubMed  Google Scholar 

  116. C. Li, W. Jiang, Y. Zhou, X. Huang, N. Zhou, PF4V1 affects the progression of oral squamous cell carcinoma by regulating Wnt/β-catenin pathway and angiogenesis. Appl. Biol. Chem. 63, 18 (2020)

    Article  CAS  Google Scholar 

  117. A. Almangush, A.A. Mäkitie, A. Triantafyllou, R. de Bree, P. Strojan, A. Rinaldo, J.C. Hernandez-Prera, C. Suárez, L.P. Kowalski, A. Ferlito, I. Leivo, Staging and grading of oral squamous cell carcinoma: An update. Oral Oncol. 107, 104799 (2020)

    Article  PubMed  Google Scholar 

  118. B.-W. Dai, Z.-M. Yang, P. Deng, Y.-R. Chen, Z.-J. He, X. Yang, S. Zhang, H.-J. Wu, Z.-H. Ren, HOXC10 promotes migration and invasion via the WNT-EMT signaling pathway in oral squamous cell carcinoma. J. Cancer 10, 4540–4551 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. A. Ebrahimi, R. Murali, K. Gao, M.S. Elliott, J.R. Clark, The prognostic and staging implications of bone invasion in oral squamous cell carcinoma. Cancer 117, 4460–4467 (2011)

    Article  PubMed  Google Scholar 

  120. J. Park, X. Zhang, S.K. Lee, N.-Y. Song, S.H. Son, K.R. Kim, J.H. Shim, K.-K. Park, W.-Y. Chung, CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion. J. Clin. Invest. 129, 5381–5399 (2019)

    Article  CAS  PubMed  Google Scholar 

  121. S. Srinath, A.R. Iyengar, V. Mysorekar, Sonic hedgehog in oral squamous cell carcinoma: An immunohistochemical study. J. Oral Maxillofac. Pathol. 20, 377–383 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  122. M.E.C. Buim, C.A.S. Gurgel, E.A.G. Ramos, S.V. Lourenco, F.A. Soares, Activation of sonic hedgehog signaling in oral squamous cell carcinomas: a preliminary study. Hum. Pathol. 42, 1484–1490 (2011)

    Article  CAS  Google Scholar 

  123. Y.-F. Wang, C.-J. Chang, C.-P. Lin, S.-Y. Chang, P.-Y. Chu, S.-K. Tai, W.-Y. Li, K.S.C. Chao, Y.-J. Chen, Expression of hedgehog signaling molecules as a prognostic indicator of oral squamous cell carcinoma. Head Neck 34, 1556–1561 (2012)

    Article  PubMed  Google Scholar 

  124. M. Yan, L. Wang, H. Zuo, Z. Zhang, W. Chen, L. Mao, P. Zhang, HH/GLI signalling as a new therapeutic target for patients with oral squamous cell carcinoma. Oral Oncol. 47, 504–509 (2011)

    Article  CAS  PubMed  Google Scholar 

  125. H. Kuroda, N. Kurio, T. Shimo, K. Matsumoto, M. Masui, K. Takabatake, T. Okui, S. Ibaragi, Y. Kunisada, K. Obata, N. Yoshioka, K. Kishimoto, H. Nagatsuka, A. Sasaki, Oral squamous cell carcinoma-derived sonic hedgehog promotes angiogenesis. Anticancer Res. 37, 6731–6737 (2017)

    CAS  PubMed  Google Scholar 

  126. H.X. Fan, S. Wang, H. Zhao, N. Liu, D. Chen, M. Sun, J.H. Zheng, Sonic hedgehog signaling may promote invasion and metastasis of oral squamous cell carcinoma by activating MMP-9 and E-cadherin expression. Med. Oncol. 31, 1–8 (2014)

    Article  Google Scholar 

  127. M.F.S.D. Rodrigues, L. Miguita, N.P. De Andrade, D. Heguedusch, C.O. Rodini, R.A. Moyses, T.N. Toporcov, R.R. Gama, E.E. Tajara, F.D. Nunes, GLI3 knockdown decreases stemness, cell proliferation and invasion in oral squamous cell carcinoma. Int. J. Oncol. 53, 2458–2472 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  128. T. Honami, T. Shimo, T. Okui, N. Kurio, N. Mohammad, M. Hassan, M. Iwamoto, A. Sasaki, Sonic hedgehog signaling promotes growth of oral squamous cell carcinoma cells associated with bone destruction. Oral Oncol. 48, 49–55 (2012)

    Article  CAS  PubMed  Google Scholar 

  129. K. Takabatake, T. Shimo, J. Murakami, C. Anqi, H. Kawai, S. Yoshida, M. Wathone Oo, O. Haruka, S. Sukegawa, H. Tsujigiwa, K. Nakano, H. Nagatsuka, The role of sonic hedgehog signaling in the tumor microenvironment of oral squamous cell carcinoma. Int. J. Mol. Sci. 20, 5779 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  130. W. Yan, Y. Deng, Y. Zhang, J. Luo, D. Lu, Q. Wan, L. Mao, Y. chen, DZIP1 promotes proliferation, migration, and invasion of oral squamous carcinoma through the GLI1/3 pathway. Transl. Oncol. 12, 1504–1515 (2019)

    Article  PubMed  Google Scholar 

  131. Q. Song, B. Wang, M. Liu, Z. Ren, Y. Fu, P. Zhang, M. Yang, MTA1 promotes the invasion and migration of oral squamous carcinoma by inducing epithelial-mesenchymal transition via the hedgehog signaling pathway. Exp. Cell Res. 382, 111450 (2019)

    Article  CAS  PubMed  Google Scholar 

  132. A. Dumortier, A.-D. Durham, M. Di Piazza, S. Vauclair, U. Koch, G. Ferrand, I. Ferrero, S. Demehri, L.L. Song, A.G. Farr, W.J. Leonard, R. Kopan, L. Miele, D. Hohl, D. Finke, F. Radtke, Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS One 5, e9258 (2010)

  133. P. Rizzo, C. Osipo, K. Foreman, T. Golde, B. Osborne, L. Miele, Rational targeting of Notch signaling in cancer. Oncogene 27, 5124–5131 (2008)

    Article  CAS  PubMed  Google Scholar 

  134. B. Cohen, M. Shimizu, J. Izrailit, N.F.L. Ng, Y. Buchman, J.G. Pan, J. Dering, M. Reedijk, Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer. Breast Cancer Res. Treat. 123, 113–124 (2010)

    Article  CAS  PubMed  Google Scholar 

  135. I. Joshi, L.M. Minter, J. Telfer, R.M. Demarest, A.J. Capobianco, J.C. Aster, P. Sicinski, A. Fauq, T.E. Golde, B.A. Osborne, Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 113, 1689–1698 (2009)

    Article  CAS  PubMed  Google Scholar 

  136. L.M. Sarmento, H. Huang, A. Limon, W. Gordon, J. Fernandes, M.J. Tavares, L. Miele, A.A. Cardoso, M. Classon, N. Carlesso, Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27 Kip1 degradation. J. Exp. Med. 202, 157–168 (2005)

    Article  CAS  PubMed  Google Scholar 

  137. R. Qi, H. An, Y. Yu, M. Zhang, S. Liu, H. Xu, Z. Guo, T. Cheng, X. Cao, Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res. 63, 8323–8329 (2003)

    CAS  PubMed  Google Scholar 

  138. K.-W. Hsu, R.-H. Hsieh, Y.-H.W. Lee, C.-H. Chao, K.-J. Wu, M.-J. Tseng, T.-S. Yeh, The activated Notch1 receptor cooperates with alpha-enolase and MBP-1 in modulating c-myc activity. Mol. Cell. Biol. 28, 4829–4842 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. T.D. Allen, E.M. Rodriguez, K.D. Jones, J.M. Bishop, Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma. Cancer Res. 71, 6010–6018 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. X. Guo, X.-F. Wang, Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res. 19, 71–88 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. X. Zeng, D. Ju, Hedgehog signaling pathway and autophagy in cancer. Int. J. Mol. Sci. 19, 2279 (2018)

  142. J.A. McCubrey, D. Rakus, A. Gizak, L.S. Steelman, S.L. Abrams, K. Lertpiriyapong, T.L. Fitzgerald, L.V. Yang, G. Montalto, M. Cervello, M. Libra, F. Nicoletti, A. Scalisi, F. Torino, C. Fenga, L.M. Neri, S. Marmiroli, L. Cocco, A.M. Martelli, Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity—Diverse effects on cell growth, metabolism and cancer. Biochim. Biophys. Acta - Mol. Cell Res. 1863, 2942–2976 (2016)

    CAS  Google Scholar 

  143. M. Pelullo, S. Zema, F. Nardozza, S. Checquolo, I. Screpanti, D. Bellavia, Wnt, Notch, and TGF-β pathways impinge on Hedgehog signaling complexity: An open window on cancer. Front. Genet. 10, 711 (2019)

  144. C. Lobry, P. Oh, I. Aifantis, Oncogenic and tumor suppressor functions of Notch in cancer: it’s NOTCH what you think. J. Exp. Med. 208, 1931–1935 (2011)

    Article  CAS  PubMed  Google Scholar 

  145. A.Q. Khan, E.I. Ahmed, N.R. Elareer, K. Junejo, M. Steinhoff, S. Uddin, Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells 8, 840 (2019)

    Article  PubMed Central  Google Scholar 

  146. S. Chatterjee, P.C. Sil, Targeting the crosstalks of Wnt pathway with Hedgehog and Notch for cancer therapy. Pharmacol. Res. 142, 251–261 (2019)

    Article  CAS  PubMed  Google Scholar 

  147. P. Hayward, T. Kalmar, A.M. Arias, Wnt/Notch signalling and information processing during development. Development 135, 411–424 (2008)

    Article  CAS  PubMed  Google Scholar 

  148. S.K. Kay, H.A. Harrington, S. Shepherd, K. Brennan, T. Dale, J.M. Osborne, D.J. Gavaghan, H.M. Byrne, The role of the Hes1 crosstalk hub in Notch-Wnt interactions of the intestinal crypt. PLoS Comp. Biol. 13, e1005400 (2017)

  149. L. Ma, Y. Wang, Y. Hui, Y. Du, Z. Chen, H. Feng, S. Zhang, N. Li, J. Song, Y. Fang, X. Xu, L. Shi, B. Zhang, J. Cheng, S. Zhou, L. Liu, X. Zhang, WNT/NOTCH pathway is essential for the maintenance and expansion of human MGE progenitors. Stem Cell Rep. 12, 934–949 (2019)

    Article  CAS  Google Scholar 

  150. V. Rodilla, A. Villanueva, A. Obrador-Hevia, A. Robert-Moreno, V. Fernández-Majada, A. Grilli, N. López-Bigas, N. Bellora, M.M. Albà, F. Torres, M. Duñach, X. Sanjuan, S. Gonzalez, T. Gridley, G. Capella, A. Bigas, L. Espinosa, Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc. Natl. Acad. Sci. USA 106, 6315–6320 (2009)

  151. C. Gekas, T. D’Altri, R. Aligué, J. González, L. Espinosa, A. Bigas, β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia 30, 2002–2010 (2016)

    Article  CAS  PubMed  Google Scholar 

  152. Y.-F. Xiao, X. Yong, B. Tang, Y. Qin, J.-W. Zhang, D. Zhang, R. Xie, S.-M. Yang, Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets (Review). Int. J. Oncol. 48, 437–449 (2016)

    Article  CAS  PubMed  Google Scholar 

  153. S. Yokogi, T. Tsubota, K. Kanki, J. Azumi, N. Itaba, H. Oka, M. Morimoto, K. Ryoke, G. Shiota, Wnt/beta-catenin signal inhibitor HC-1 sensitizes oral squamous cell carcinoma cells to 5-fluorouracil through reduction of CD44-positive population. Yonago Acta Med. 59, 93–99 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  154. J. Camps, J.J. Pitt, G. Emons, A.B. Hummon, C.M. Case, M. Grade, T.L. Jones, Q.T. Nguyen, B.M. Ghadimi, T. Beissbarth, M.J. Difilippantonio, N.J. Caplen, T. Ried, Genetic amplification of the NOTCH modulator LNX2 upregulates the WNT/β-catenin pathway in colorectal cancer. Cancer Res. 73, 2003–2013 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. M. Moghbeli, M.R. Abbaszadegan, E. Golmakani, M.M. Forghanifard, Correlation of Wnt and NOTCH pathways in esophageal squamous cell carcinoma. J. Cell. Comm. Signal. 10, 129–135 (2016)

    Article  Google Scholar 

  156. C. Porcheri, C.T. Meisel, T. Mitsiadis, Multifactorial contribution of Notch signaling in head and neck squamous cell carcinoma. Int. J. Mol. Sci. 20, 1520 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  157. J.H. Es, M.E. Van, Gijn, O. Van, Riccio, M. Born, M. Van Den, Vooijs, H. Begthel, M. Cozijnsen, S. Robine, D.J. Winton, F. Radtke, H. Clevers, Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005)

    Article  PubMed  Google Scholar 

  158. M.R. Abbaszadegan, A. Riahi, M.M. Forghanifard, M. Moghbeli, WNT and NOTCH signaling pathways as activators for epidermal growth factor receptor in esophageal squamous cell carcinoma. Cell. Mol. Biol. Lett. 23, 42 (2018)

  159. A. Gulino, L. Di Marcotullio, I. Screpanti, The multiple functions of Numb. Exp. Cell Res. 316, 900–906 (2010)

    Article  CAS  PubMed  Google Scholar 

  160. S. Pece, S. Confalonieri, R. Romano, P.P. Di Fiore, NUMB-ing down cancer by more than just a NOTCH. Biochim. Biophys. Acta 1815, 26–43 (2011)

    CAS  PubMed  Google Scholar 

  161. L. Di Marcotullio, E. Ferretti, A. Greco, E. De Smaele, A. Po, M.A. Sico, M. Alimandi, G. Giannini, M. Maroder, I. Screpanti, A. Gulino, Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat. Cell Biol. 8, 1415–1423 (2006)

    Article  PubMed  Google Scholar 

  162. H. Kim, Z.A. Ronai, Rewired Notch/p53 by Numb’ing Mdm2. J. Cell Biol. 217, 445–446 (2018)

    Article  CAS  PubMed  Google Scholar 

  163. M.A. McGill, C.J. McGlade, Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J. Biol. Chem. 278, 23196–23203 (2003)

    Article  CAS  Google Scholar 

  164. N. Takebe, L. Miele, P.J. Harris, W. Jeong, H. Bando, M. Kahn, S.X. Yang, S.P. Ivy, Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol. 12, 445–464 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. J. Koury, L. Zhong, J. Hao, Targeting signaling pathways in cancer stem cells for cancer treatment. Stem Cells Int. 2017, 2925869 (2017)

  166. M.A. Burns, Z.W. Liao, N. Yamagata, G.P. Pouliot, K.E. Stevenson, D.S. Neuberg, A.R. Thorner, M. Ducar, E.A. Silverman, S.P. Hunger, M.L. Loh, S.S. Winter, K.P. Dunsmore, B. Wood, M. Devidas, M.H. Harris, L.B. Silverman, S.E. Sallan, A. Gutierrez, Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia. Leukemia 32, 2126–2137 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. A.S.W. Oak, G. Bocheva, T.-K. Kim, A.A. Brożyna, Z. Janjetovic, M. Athar, R.C. Tuckey, A.T. Slominski, Noncalcemic vitamin D hydroxyderivatives inhibit human oral squamous cell carcinoma and down-regulate Hedgehog and WNT/β-catenin pathways. Anticancer Res. 40, 2467–2474 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. A. Bakshi, S.C. Chaudhary, M. Rana, C.A. Elmets, M. Athar, Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol. Carcinog. 56, 2543–2557 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. M. Nicolas, A. Wolfer, K. Raj, J. Kummer, P. Mill, M. Noort, C. Hui, H. Clevers, G.P. Dotto, F. Radtke, Notch1 functions as a tumor suppressor in mouse skin. Nature Genet. 33, 416–421 (2003)

    Article  CAS  PubMed  Google Scholar 

  170. Z. Wang, Y. Li, S. Banerjee, F.H. Sarkar, Exploitation of the Notch signaling pathway as a novel target for cancer therapy. Anticancer Res. 28, 3621–3630 (2008)

    PubMed  Google Scholar 

  171. J. Domingo-Domenech, S.J. Vidal, V. Rodriguez-Bravo, M. Castillo-Martin, S.A. Quinn, R. Rodriguez-Barrueco, D.M. Bonal, E. Charytonowicz, N. Gladoun, J. de la Iglesia-Vicente, D.P. Petrylak, M.C. Benson, J.M. Silva, C. Cordon-Cardo, Suppression of acquired docetaxel resistance in prostate cancer through depletion of Notch-and Hedgehog-dependent tumor-initiating cells. Cancer Cell 22, 373–388 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. M.P. Yavropoulou, A. Maladaki, J.G. Yovos, The role of Notch and Hedgehog signaling pathways in pituitary development and pathogenesis of pituitary adenomas. Hormones (Athens) 14, 5–18 (2015)

    Article  Google Scholar 

  173. M.P. Steinbuck, S. Winandy, A review of Notch processing with new insights into ligand-independent Notch signaling in T-cells. Front Immunol 9, 1230 (2018)

  174. W.J. Ingram, K.I. McCue, T.H. Tran, A.R. Hallahan, B.J. Wainwright, Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene 27, 1489–1500 (2008)

    Article  CAS  PubMed  Google Scholar 

  175. D.S. Wall, A.J. Mears, B. McNeill, C. Mazerolle, S. Thurig, Y. Wang, R. Kageyama, V.A. Wallace, Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. J. Cell Biol. 184, 101–112 (2009)

    Article  CAS  PubMed  Google Scholar 

  176. C.L. Curry, L.L. Reed, B.J. Nickoloff, L. Miele, K.E. Foreman, Notch-independent regulation of Hes-1 expression by c-Jun N-terminal kinase signaling in human endothelial cells. Lab. Invest. 86, 842–852 (2006)

    Article  CAS  PubMed  Google Scholar 

  177. J.W. Kim, M.J. Kim, K.J. Kim, H.J. Yun, J.S. Chae, S.G. Hwang, T.-S. Chang, H.-S. Park, K.-W. Lee, P.-L. Han, S.-G. Cho, T.-W. Kim, E.-J. Choi, Notch interferes with the scaffold function of JNK-interacting protein 1 to inhibit the JNK signaling pathway. Proc. Natl. Acad. Sci. USA. 102, 14308–14313 (2005)

  178. M.-T. Stockhausen, J. Sjölund, H. Axelson, Regulation of the Notch target gene Hes-1 by TGFalpha induced Ras/MAPK signaling in human neuroblastoma cells. Exp. Cell Res. 310, 218–228 (2005)

    Article  CAS  PubMed  Google Scholar 

  179. X.-Y. Huang, R.-H. Gan, J. Xie, L. She, Y. Zhao, L.-C. Ding, B.-H. Su, D.-L. Zheng, Y.-G. Lu, The oncogenic effects of HES1 on salivary adenoid cystic carcinoma cell growth and metastasis. BMC Cancer 18, 436 (2018)

    Article  PubMed  Google Scholar 

  180. J.H. Kong, L. Yang, E. Dessaud, K. Chuang, D.M. Moore, R. Rohatgi, J. Briscoe, B.G. Novitch, Notch activity modulates the responsiveness of neural progenitors to sonic hedgehog signaling. Dev. Cell 33, 373–387 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. E. Ezratty, N. Stokes, S. Chai, A. Shah, S. Williams, E. Fuchs, A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 145, 1129–1141 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. M. Stasiulewicz, S.D. Gray, I. Mastromina, J.C. Silva, M. Björklund, P.A. Seymour, D. Booth, C. Thompson, R.J. Green, E.A. Hall, P. Serup, J.K. Dale, A conserved role for Notch signaling in priming the cellular response to Shh through ciliary localisation of the key Shh transducer Smo. Development 142, 2291–2303 (2015)

    CAS  PubMed  Google Scholar 

  183. N. Oikawa, J. Walter, Presenilins and γ-secretase in membrane proteostasis. Cells 8, 209 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  184. K. Dimitrova, M. Stoehr, F. Dehghani, A. Dietz, G. Wichmann, J. Bertolini, C. Mozet, Overexpression of the Hedgehog signalling pathway in head and neck squamous cell carcinoma. Onkologie 36, 279–286 (2013)

    CAS  PubMed  Google Scholar 

  185. T. Ishida, H. Hijioka, K. Kume, A. Miyawaki, N. Nakamura, Notch signaling induces EMT in OSCC cell lines in a hypoxic environment. Oncol. Lett. 6, 1201–1206 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. M. Yan, L. Wang, H. Zuo, Z. Zhang, W. Chen, L. Mao, P. Zhang, HH / GLI signalling as a new therapeutic target for patients with oral squamous cell carcinoma. Oral Oncol. 47, 504–509 (2011)

    Article  CAS  PubMed  Google Scholar 

  187. J. Qu, Y. Wang, Y. Yang, J. Liu, Targeting Notch-1 reverses cisplatin chemosensitivity in ovarian cancer cells by upregulation of PUMA. Int. J. Exp. Med. 10, 7785–7795 (2017)

    CAS  Google Scholar 

  188. L. Li, H.-C. Liu, C. Wang, X. Liu, F.-C. Hu, N. Xie, L. Lü, X. Chen, H.-Z. Huang, Overexpression of β-catenin induces cisplatin resistance in oral squamous cell carcinoma. BioMed Res. Int. 2016, 1–11 (2016)

  189. J. Tian, X. Cui, Y. Feng, L. Gu, Inhibition of WNT7A-β-catenin signaling pathway sensitizes oral squamous cell carcinoma to cisplatin. Int. J. Clin. Exp. Pathol. 11, 4926–4933 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  190. F. Huang, C. Xin, K. Lei, H. Bai, J. Li, Q. Chen, Noncoding RNAs in oral premalignant disorders and oral squamous cell carcinoma. Cell. Oncol. 43, 763–777 (2020)

  191. J. Manokawinchoke, T. Osathanon, P. Pavasant, Regulation of osteoprotegerin expression by Notch signaling in human oral squamous cell carcinoma cell line. Asian Pacific J. Tropical Biomed. 6, 692–697 (2016)

    Article  CAS  Google Scholar 

  192. H. Inoue, Y. Ohnishi, Y. Shoju, M. Nakajima, K. Kakudo, Effects of a gamma secretase inhibitor on the proliferation and invasiveness of oral squamous cell carcinoma cell lines. Asian J. Oral Maxillofac. Surg. 23, 1–6 (2011)

    Article  Google Scholar 

  193. Z.-L. Zhao, L. Zhang, C.-F. Huang, S.-R. Ma, L.-L. Bu, J.-F. Liu, G.-T. Yu, B. Liu, J.S. Gutkind, A.B. Kulkarni, W.-F. Zhang, Z.-J. Sun, NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Sci. Rep. 6, 24704 (2016)

    Article  PubMed  Google Scholar 

  194. J.-P. Ou, H.-Y. Lin, K.-Y. Su, S.-L. Yu, I.-H. Tseng, C.-J. Chen, H.-C. Hsu, D.-C. Chan, S. Chen, Y.-L., Potential therapeutic role of Z-isochaihulactone in lung cancer through induction of apoptosis via Notch signaling. Evid. Based Compl. Alternat. Med. 2012, 809204 (2012)

  195. J. Yao, L. Duan, M. Fan, X. Wu, γ-secretase inhibitors exerts antitumor activity via down-regulation of Notch and Nuclear factor kappa B in human tongue carcinoma cells. Oral Dis. 13, 555–563 (2007)

    Article  CAS  PubMed  Google Scholar 

  196. A. Greife, S. Jankowiak, J. Steinbring, P. Nikpour, G. Niegisch, M.J. Hoffmann, W.A. Schulz, Canonical Notch signalling is inactive in urothelial carcinoma. BMC Cancer 14, 628 (2014)

    Article  PubMed  Google Scholar 

  197. C.-K. Kim, P. He, A.B. Bialkowska, V.W. Yang, SP and KLF Transcription factors in digestive physiology and diseases. Gastroenterology 152, 1845–1875 (2017)

    Article  CAS  PubMed  Google Scholar 

  198. T.-H. Kim, R.A. Shivdasani, Genetic evidence that intestinal Notch functions vary regionally and operate through a common mechanism of Math1 repression. J. Biol. Chem. 286, 11427–11433 (2011)

    Article  CAS  PubMed  Google Scholar 

  199. Y. Hayakawa, H. Ariyama, J. Stancikova, K. Sakitani, S. Asfaha, B.W. Renz, Z.A. Dubeykovskaya, W. Shibata, H. Wang, C.B. Westphalen, X. Chen, Y. Takemoto, W. Kim, S.S. Khurana, Y. Tailor, K. Nagar, H. Tomita, A. Hara, A.R. Sepulveda, W. Setlik, M.D. Gershon, S. Saha, L. Ding, Z. Shen, J.G. Fox, R.A. Friedman, S.F. Konieczny, D.L. Worthley, V. Korinek, T.C. Wang, Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche. Cancer Cell 28, 800–814 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. G. Ferrari-Toninelli, S.A. Bonini, D. Uberti, L. Buizza, P. Bettinsoli, P.L. Poliani, F. Facchetti, M. Memo, Targeting Notch pathway induces growth inhibition and differentiation of neuroblastoma cells. Neuro Oncol. 12, 1231–1243 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. C. Dantas-Barbosa, G. Bergthold, E. Daudigeos-Dubus, H. Blockus, J.F. Boylan, C. Ferreira, S. Puget, M. Abely, G. Vassal, J. Grill, B. Geoerger, Inhibition of the NOTCH pathway using γ-secretase inhibitor RO4929097 has limited antitumor activity in established glial tumors. Anticancer Drugs 26, 272–283 (2015)

    Article  CAS  PubMed  Google Scholar 

  202. A. De Jesus-Acosta, D. Laheru, A. Maitra, J. Arcaroli, M.A. Rudek, A. Dasari, P.J. Blatchford, K. Quackenbush, W. Messersmith, A phase II study of the gamma secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma. Invest. New Drugs 32, 739–745 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  203. R. Gan, L. Lin, J. Xie, L. Huang, L. Ding, B. Su, X. Peng, D. Zheng, Y. Lu, FLI-06 intercepts Notch signaling and suppresses the proliferation and self-renewal of tongue cancer cells. Onco. Targets. Ther. 12, 7663–7674 (2019)

    Article  CAS  PubMed  Google Scholar 

  204. N. Cook, B. Basu, D.-M. Smith, A. Gopinathan, J. Evans, W.P. Steward, D. Palmer, D. Propper, B. Venugopal, M. Hategan, D.A. Anthoney, L.V. Hampson, M. Nebozhyn, D. Tuveson, H. Farmer-Hall, H. Turner, R. McLeod, S. Halford, D. Jodrell, A phase I trial of the γ-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Brit. J. Cancer 118, 793–801 (2018)

    Article  CAS  PubMed  Google Scholar 

  205. S. Liao, J. Xia, Z. Chen, S. Zhang, A. Ahmad, L. Miele, F.H. Sarkar, Z. Wang, Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-κB signaling pathways. J. Cell. Biochem. 112, 1055–1065 (2011)

    Article  CAS  PubMed  Google Scholar 

  206. L. Zeng, A. Nikolaev, C. Xing, D.L. Della Manna, E.S. Yang, CHK1/2 Inhibitor Prexasertib suppresses NOTCH signaling and enhances cytotoxicity of cisplatin and radiation in head and neck squamous cell carcinoma. Mol. Cancer Ther. 19, 1279–1288 (2020)

    Article  CAS  PubMed  Google Scholar 

  207. C. Braicu, A.I. Irimie, O. Zanoaga, C. Gherman, I. Berindan-Neagoe, R.S. Campian, V. Pileczki, Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis and autophagy in oral cancer SSC-4 cells. Onco. Targets. Ther. 8, 461–470 (2015)

    Article  PubMed  Google Scholar 

  208. V.K. Kartha, K.A. Alamoud, K. Sadykov, B.-C. Nguyen, F. Laroche, H. Feng, J. Lee, S.I. Pai, X. Varelas, A.M. Egloff, J.E. Snyder-Cappione, A.C. Belkina, M.V. Bais, S. Monti, M.A. Kukuruzinska, Functional and genomic analyses reveal therapeutic potential of targeting β-catenin/CBP activity in head and neck cancer. Genome Med. 10, 54 (2018)

    Article  PubMed  Google Scholar 

  209. L.-H. Wang, M. Xu, L.-Q. Fu, X.-Y. Chen, F. Yang, The antihelminthic Niclosamide inhibits cancer stemness, extracellular matrix remodeling, and metastasis through dysregulation of the nuclear β-catenin/c-Myc axis in OSCC. Sci. Rep. 8, 12776 (2018)

    Article  PubMed  Google Scholar 

  210. S. Maji, O. Shriwas, S.K. Samal, M. Priyadarshini, R. Rath, S. Panda, S.K. Das Majumdar, D.K. Muduly, R. Dash, STAT3- and GSK3β-mediated Mcl-1 regulation modulates TPF resistance in oral squamous cell carcinoma. Carcinogenesis 40, 173–183 (2019)

    Article  CAS  PubMed  Google Scholar 

  211. C. Xiao, L. Wang, L. Zhu, C. Zhang, J. Zhou, Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression. Biochem. Biophys. Res. Comm. 454, 576–580 (2014)

    Article  CAS  PubMed  Google Scholar 

  212. M. Giefing, M. Wierzbicka, K. Szyfter, J.C. Brenner, B.J. Braakhuis, R.H. Brakenhoff, C.R. Bradford, J.A. Sorensen, A. Rinaldo, J.P. Rodrigo, R.P. Takes, A. Ferlito, Moving towards personalised therapy in head and neck squamous cell carcinoma through analysis of next generation sequencing data. Eur. J. Cancer 55, 147–157 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. C.-J. Yao, G.-M. Lai, C.-T. Yeh, M.-T. Lai, P.-H. Shih, W.-J. Chao, J. Whang-Peng, S.-E. Chuang, T.-Y. Lai, Honokiol eliminates human oral cancer stem-like cells accompanied with suppression of Wnt/β-catenin signaling and apoptosis induction. Evid. Based Complement. Alternat. Med.. 2013, 1–10 (2013)

  214. C. Zhang, Y. Hao, Y. Sun, P. Liu, Quercetin suppresses the tumorigenesis of oral squamous cell carcinoma by regulating microRNA-22/WNT1/β-catenin axis. J. Pharmacol. Sci. 140, 128–136 (2019)

    Article  CAS  PubMed  Google Scholar 

  215. J. Sophia, J. Kowshik, A. Dwivedi, S.K. Bhutia, B. Manavathi, R. Mishra, S. Nagini, Nimbolide, a neem limonoid inhibits cytoprotective autophagy to activate apoptosis via modulation of the PI3K/Akt/GSK-3β signalling pathway in oral cancer. Cell Death Dis. 9, 1087 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  216. J. Sophia, T.K. Kiran Kishore, J. Kowshik, R. Mishra, S. Nagini, Nimbolide, a neem limonoid inhibits Phosphatidyl Inositol-3 Kinase to activate Glycogen Synthase Kinase-3β in a hamster model of oral oncogenesis. Sci. Rep. 6, 22192 (2016)

    Article  CAS  PubMed  Google Scholar 

  217. K.L. Hamilton, S.A. Sheehan, E.P. Retzbach, C.A. Timmerman, G.B. Gianneschi, P.J. Tempera, P. Balachandran, G.S. Goldberg, Effects of Maackia amurensis seed lectin (MASL) on oral squamous cell carcinoma (OSCC) gene expression and transcriptional signaling pathways. J. Cancer Res. Clin. Oncol. 147, 445–457 (2021)

  218. H. Fan, H. Li, G. Liu, W. Cong, H. Zhao, W. Cao, J. Zheng, Doxorubicin combined with low intensity ultrasound suppresses the growth of oral squamous cell carcinoma in culture and in xenografts. J. Exp. Clin. Cancer Res. 36, 163 (2017)

    Article  PubMed  Google Scholar 

  219. S. Hehlgans, P. Booms, Ö Güllülü, R. Sader, C. Rödel, P. Balermpas, F. Rödel, S. Ghanaati, Radiation sensitization of basal cell and head and neck squamous cell carcinoma by the Hedgehog pathway inhibitor Vismodegib. Int. J. Mol. Sci. 19, 2485 (2018)

    Article  PubMed Central  Google Scholar 

  220. H. Kuroda, N. Kurio, T. Shimo, K. Matsumoto, M. Masui, K. Takabatake, T. Okui, S. Ibaragi, Y. Kunisada, K. Obata, N. Yoshioka, K. Kishimoto, H. Nagatsuka, A. Sasaki, Oral squamous cell carcinoma-derived Sonic Hedgehog promotes angiogenesis. Anticancer Res. 37, 6731–6737 (2017)

    CAS  PubMed  Google Scholar 

  221. S. Kasiri, C. Shao, B. Chen, A.N. Wilson, P. Yenerall, B.C. Timmons, L. Girard, H. Tian, C. Behrens, I.I. Wistuba, A.F. Gazdar, J. Kim, GLI1 blockade potentiates the antitumor activity of PI3K antagonists in lung squamous cell carcinoma. Cancer Res. 77, 4448–4459 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. J. Kim, B.T. Aftab, J.Y. Tang, D. Kim, A.H. Lee, M. Rezaee, J. Kim, B. Chen, E.M. King, A. Borodovsky, G.J. Riggins, E.H. Epstein, P.A. Beachy, C.M. Rudin, Itraconazole and arsenic trioxide inhibit hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 23, 23–34 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. X. Cai, K. Yu, L. Zhang, Y. Li, Q. Li, Z. Yang, T. Shen, L. Duan, W. Xiong, W. Wang, Synergistic inhibition of colon carcinoma cell growth by Hedgehog-Gli1 inhibitor arsenic trioxide and phosphoinositide 3-kinase inhibitor LY294002. Onco. Targets. Ther. 8, 877–883 (2015)

    PubMed  Google Scholar 

  224. A. Almazán-Moga, P. Zarzosa, I. Vidal, C. Molist, I. Giralt, N. Navarro, A. Soriano, M.F. Segura, A. Alfranca, J. Garcia-Castro, Sánchez de Toledo, J., J. Roma, S. Gallego, Hedgehog pathway inhibition hampers sphere and holoclone formation in rhabdomyosarcoma. Stem Cells Int. 2017, 7507380 (2017)

  225. M.C. Pietanza, A.M. Litvak, A.M. Varghese, L.M. Krug, M. Fleisher, J.B. Teitcher, A.I. Holodny, C.S. Sima, K.M. Woo, K.K. Ng, H.H. Won, M.F. Berger, M.G. Kris, C.M. Rudin, A phase I trial of the Hedgehog inhibitor, sonidegib (LDE225), in combination with etoposide and cisplatin for the initial treatment of extensive stage small cell lung cancer. Lung Cancer 99, 23–30 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  226. S.A. Cannonier, C.B. Gonzales, K. Ely, S.A. Guelcher, J.A. Sterling, Hedgehog and TGFβ signaling converge on Gli2 to control bony invasion and bone destruction in oral squamous cell carcinoma. Oncotarget 7, 76062–76075 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  227. Q. Gao, Y. Yuan, H.-Z. Gan, Q. Peng, Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis. Oncol. Lett. 9, 2381–2387 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. X.-D. Yu, J. Yang, W.-L. Zhang, D.-X. Liu, Resveratrol inhibits oral squamous cell carcinoma through induction of apoptosis and G2/M phase cell cycle arrest. Tumor Biol. 37, 2871–2877 (2016)

    Article  CAS  Google Scholar 

  229. H. Xie, B.D. Paradise, W.W. Ma, M.E. Fernandez-Zapico, Recent advances in the clinical targeting of Hedgehog/GLI signaling in cancer. Cells 8, 394 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  230. C.H. Choi, J.-Y. Ryu, Y.-J. Cho, H.-K. Jeon, J.-J. Choi, K. Ylaya, Y.-Y. Lee, T.-J. Kim, J.-Y. Chung, S.M. Hewitt, B.-G. Kim, D.-S. Bae, J.-W. Lee, The anti-cancer effects of itraconazole in epithelial ovarian cancer. Sci. Rep. 7, 6552 (2017)

    Article  PubMed  Google Scholar 

  231. R.D. Freitas, R.B. Dias, M.T.A. Vidal, L. Valverde, de F.Gomes Alves Costa, R. Damasceno, A.K.A. Sales, C.B.S., Siquara da Rocha, L. de O.Dos Reis, M.G. Soares, M.B.P. Coletta, R.D. Pereira, T.A. Bezerra, D.P.,G. Rocha, C.A., Inhibition of CAL27 oral squamous carcinoma cell by targeting Hedgehog pathway with Vismodegib or Itraconazole. Front. Oncol. 10, 563838 (2020)

  232. Y. Guo, Y. Chen, H. Liu, W. Yan, Alpinetin inhibits oral squamous cell carcinoma proliferation via miR-211-5p upregulation and Notch pathway deactivation. Nutr. Cancer 72, 757–767 (2020)

    Article  CAS  PubMed  Google Scholar 

  233. Z. Liu, H. Li, S. Fan, H. Lin, W. Lian, STAT3-induced upregulation of long noncoding RNA HNF1A-AS1 promotes the progression of oral squamous cell carcinoma via activating Notch signaling pathway. Cancer Biol. Ther. 20, 444–453 (2019)

    Article  CAS  PubMed  Google Scholar 

  234. F. Liu, H.-X. Chu, J.-S. Han, X. Sun, J. Chen, X.-L. Qiu, X.-H. Zheng, B. Jia, J.-J. Zhao, Inhibitory effect of the Notch pathway-inhibitor DAPT on invasion and metastasis of tongue cancer via lncRNA-KAT14 regulation. Eur. Rev. Med. Pharmacol. Sci. 24, 189–199 (2020)

    CAS  PubMed  Google Scholar 

  235. K. He, Z.-B. Zhu, R. Shu, A. Hong, LncRNA NEAT1 mediates progression of oral squamous cell carcinoma via VEGF-A and Notch signaling pathway. World J. Surg. Oncol. 18, 261 (2020)

    Article  PubMed  Google Scholar 

  236. K.-L. Tang, H.-Y. Tang, Y. Du, T. Tian, S.-J. Xiong, MiR-638 suppresses the progression of oral squamous cell carcinoma through wnt/β-catenin pathway by targeting phospholipase D1. Artif. Cells Nanomed. Biotechnol. 47, 3278–3285 (2019)

    Article  CAS  PubMed  Google Scholar 

  237. C. Huang, L. Wang, H. Song, C. Wu, MiR-29a inhibits the progression of oral squamous cell carcinoma by targeting Wnt/β-catenin signalling pathway. Artif. Cells Nanomed. Biotechnol. 47, 3037–3042 (2019)

    Article  CAS  PubMed  Google Scholar 

  238. B. Liu, W. Chen, G. Cao, Z. Dong, J. Xu, T. Luo, S. Zhang, MicroRNA-27b inhibits cell proliferation in oral squamous cell carcinoma by targeting FZD7 and Wnt signaling pathway. Arch. Oral Biol. 83, 92–96 (2017)

    Article  CAS  PubMed  Google Scholar 

  239. B. Qiao, B.-X. He, J.-H. Cai, Q. Tao, A. King-Yin Lam, MicroRNA-27a-3p modulates the Wnt/β-catenin signaling pathway to promote epithelial-mesenchymal transition in oral squamous carcinoma stem cells by targeting SFRP1. Sci. Rep. 7, 44688 (2017)

    Article  CAS  PubMed  Google Scholar 

  240. J. Weng, H. Zhang, C. Wang, J. Liang, G. Chen, W. Li, H. Tang, J. Hou, miR-373-3p Targets DKK1 to promote EMT-induced metastasis via the Wnt/β-catenin pathway in tongue squamous cell carcinoma. Biomed. Res. Int. 2017, 6010926 (2017)

  241. T.-R. Shao, Z.-N. Zheng, Y.-C. Chen, Q.-Q. Wu, G.-Z. Huang, F. Li, W.-S. Zeng, X.-Z. Lv, LncRNA AC007271.3 promotes cell proliferation, invasion, migration and inhibits cell apoptosis of OSCC via the Wnt/β-catenin signaling pathway. Life Sci. 239, 117087 (2019)

    Article  CAS  PubMed  Google Scholar 

  242. F. Chen, S. Qi, X. Zhang, J. Wu, X. Yang, R. Wang, lncRNA PLAC2 activated by H3K27 acetylation promotes cell proliferation and invasion via the activation of Wnt/β-catenin pathway in oral squamous cell carcinoma. Int. J. Oncol. 54, 1183–1194 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Y. Zhou, S. Sinha, J.L. Schwartz, G.R. Adami, A subtype of oral, laryngeal, esophageal, and lung, squamous cell carcinoma with high levels of TrkB-T1 neurotrophin receptor mRNA. BMC Cancer 19, 607 (2019)

    Article  PubMed  Google Scholar 

  244. H. Ma, L. Li, L. Jia, A. Gong, A. Wang, L. Zhang, M. Gu, G. Tang, POM121 is identified as a novel prognostic marker of oral squamous cell carcinoma. J. Cancer 10, 4473–4480 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. S.M. De carvalho lyra, A.B. Moleri, R.S. Dezonne, De sampaio e spohr, T.C.L., De Queiroz chaves lourenço, S. Moura-neto, V. Pereira, C.M., Evaluation of microRNAs related to the Sonic Hedgehog pathway in oral cancer. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 129, e133 (2020)

  246. Z. Wei, Y. Wang, L. Jiang, N. Ji, Y. Wang, F. Chen, T. Li, J. Li, H. Xu, X. Zeng, Q. Chen, miR-223 regulates oral squamous cell carcinoma metastasis through the Wnt/β-catenin signaling pathway. Oral Oncol. 109, 104941 (2020)

    Article  CAS  PubMed  Google Scholar 

  247. G.-H. Li, Z.-H. Ma, X. Wang, Long non-coding RNA CCAT1 is a prognostic biomarker for the progression of oral squamous cell carcinoma via miR-181a-mediated Wnt/β-catenin signaling pathway. Cell Cycle 18, 2902–2913 (2019)

    Article  CAS  PubMed  Google Scholar 

  248. Y. Ai, S. Wu, C. Zou, H. Wei, LINC00941 promotes oral squamous cell carcinoma progression via activating CAPRIN2 and canonical WNT/β-catenin signaling pathway. J. Cell. Mol. Med. 24, 10512–10524 (2020)

    Article  CAS  PubMed  Google Scholar 

  249. J. Vermonken, E. Remenar, A. Kawecki, S. Rottey, J. Erfan, D. Zabolotnyy, H.-R. Keinzer, D. Cupissol, F. Peyrade, M. Benasso, I. Vynnychenko, D. Raucourt, C. De, Bokemeyer, A. Schueler, N. Amellal, R. Hitt, Platinum-based chemotherapy plus cetuximab in head and neck cancer. New Engl. J. Med. 359, 1116–1127 (2008)

    Article  Google Scholar 

  250. B. Burtness, M.A. Goldwasser, W. Flood, B. Mattar, A.A. Forastiere, Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic / recurrent head and neck cancer: An eastern cooperative oncology group study. J. Clin. Oncol. 23, 8646–8654 (2017)

    Article  Google Scholar 

  251. S.A. Kono, M.H. Jr, S.S. Yom, N. Saba, EGFR monoclonal antibodies in the treatment of squamous cell carcinoma of the head and neck: A view beyond cetuximab. Chemother. Res. Pract. 2012, 1–10 (2012)

  252. P. Bonomo, I. Desideri, M. Loi, M. Mangoni, M. Sottili, L. Marrazzo, C. Talamonti, D. Greto, S. Pallotta, L. Livi, Anti PD-L1 DUrvalumab combined with Cetuximab and RadiOtherapy in locally advanced squamous cell carcinoma of the head and neck: A phase I/II study (DUCRO). Clin. Transl. Radiat. Oncol. 9, 42–47 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  253. C. Xiao, L. Wang, L. Zhu, C. Zhang, J. Zhou, Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression. Biochem. Biophys. Res. Comm. 454, 576–580 (2014)

  254. S. Liao, J. Xia, Z. Chen, S. Zhang, A. Ahmad, L. Miele, F.H. Sarkar, Z. Wang, Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-kB signaling pathways. J. Cell. Biochem. 1065, 1055–1065 (2011)

    Article  Google Scholar 

  255. W. Pathway, X. Li, J. Wu, S. Geng, C. Zhong, H. Han, (–)-Epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing Wnt/ β-catenin pathway. Nutrients 9, 1–11 (2017)

    Google Scholar 

  256. J. Kim, X. Zhang, K.M. Rieger-christ, I.C. Summerhayes, D.E. Wazer, K.E. Paulson, A.S. Yee, Suppression of Wnt signaling by the green tea compound (؊) -epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. J. Biol. Chem. 281, 10865–10875 (2006)

    Article  CAS  PubMed  Google Scholar 

  257. J. Zhu, Y. Jiang, X. Yang, S. Wang, C. Xie, X. Li, Y. Li, Y. Chen, X. Wang, Y. Meng, M. Zhu, R. Wu, C. Huang, X. Ma, S. Geng, J. Wu, C. Zhong, Wnt/β-catenin pathway mediates (-)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. Biochem. Biophys. Res. Commun. 482, 15–21 (2017)

    Article  CAS  PubMed  Google Scholar 

  258. Y. Chen, X. Wang, (–) -Epigallocatechin gallate targets Notch to attenuate the inflammatory response in the immediate early stage in human macrophages. Front. Immunol. 8, 1–21 (2017)

  259. E.J. Allenspach, I. Maillard, J.C. Aster, W.S. Pear, Notch signaling in cancer. Cancer Biol. Ther. 1, 466–476 (2002)

    Article  PubMed  Google Scholar 

  260. L.L. Rubin, F.J. de Sauvage, Targeting the Hedgehog pathway in cancer. Nature Rev. Drug Discov. 5, 1026–1033 (2006)

    Article  CAS  Google Scholar 

  261. P. Polakis, Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000)

    Article  CAS  PubMed  Google Scholar 

  262. M. Dvorakova, T. Vanek, Histone deacetylase inhibitors for the treatment of cancer. Stem Cells 7, 2217–2231 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

Work on OSCC Notch signaling has been performed in the lab through an Indo-Africa project sanctioned by the Government of India. The authors thank the Department of Science and Technology (DST), Government of India, for the support.

Funding

Funded through an Indo South Africa project sanctioned by the Department of Science and Technology (DST), Government of India, under the Bilateral Programme (DST/INT/SOUTH Africa/P-12/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arikketh Devi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Consent for publication

All authors agreed to publish the article.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patni, A.P., Harishankar, M.K., Joseph, J.P. et al. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell Oncol. 44, 473–494 (2021). https://doi.org/10.1007/s13402-021-00591-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-021-00591-3

Keywords

Navigation