Skip to main content
Log in

Topoisomerase IIβ immunoreactivity (IR) co-localizes with neuronal marker-IR but not glial fibrillary acidic protein-IR in GLI3-positive medulloblastomas: an immunohistochemical analysis of 124 medulloblastomas from the Japan Children’s Cancer Group

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

We previously reported observing GLI3 in medulloblastomas expressing neuronal markers (NM) and/or glial fibrillary acidic protein (GFAP). Furthermore, patients with medulloblastomas expressing NM or GFAP tended to show favorable or poor prognosis, respectively. In the present study, we focused on the role of topoisomerase IIβ (TOP2β) as a possible regulator for neuronal differentiation in medulloblastomas and examined the pathological roles of GLI3, NM, GFAP, and TOP2β expressions in a larger population. We divided 124 medulloblastomas into three groups (NM−/GFAP−, NM +/GFAP−, and GFAP +) based on their immunoreactivity (IR) against NM and GFAP. The relationship among GLI3, NM, GFAP, and TOP2β was evaluated using fluorescent immunostaining and a publicly available single-cell RNA sequencing dataset. In total, 87, 30, and 7 medulloblastomas were classified as NM−/GFAP−, NM + /GFAP−, and GFAP +, and showed intermediate, good, and poor prognoses, respectively. GLI3-IR was frequently observed in NM +/GFAP−  and GFAP + , and TOP2β-IR was frequently observed only in NM +/GFAP−  medulloblastomas. In fluorescent immunostaining, TOP2β-IR was mostly co-localized with NeuN-IR but not with GFAP-IR. In single-cell RNA sequencing, TOP2β expression was elevated in CMAS/DCX-positive, but not in GFAP-positive, cells. NM-IR and GFAP-IR are important for estimating the prognosis of patients with medulloblastoma; hence they should be assessed in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Northcott PA, Korshunov A, Witt H et al (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29:1408–1414

    Article  Google Scholar 

  2. Cavalli FMG, Remke M, Rampasek L et al (2017) Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31:737-754.e736

    Article  CAS  Google Scholar 

  3. Brown HG, Kepner JL, Perlman EJ et al (2000) “Large cell/anaplastic” medulloblastomas: a Pediatric Oncology Group Study. J Neuropathol Exp Neurol 59:857–865

    Article  CAS  Google Scholar 

  4. Eberhart CG, Kepner JL, Goldthwaite PT et al (2002) Histopathologic grading of medulloblastomas: a Pediatric Oncology Group study. Cancer 94:552–560

    Article  Google Scholar 

  5. Giangaspero F, Rigobello L, Badiali M et al (1992) Large-cell medulloblastomas. A distinct variant with highly aggressive behavior. Am J Surg Pathol 16:687–693

    Article  CAS  Google Scholar 

  6. Giangaspero F, Wellek S, Masuoka J et al (2006) Stratification of medulloblastoma on the basis of histopathological grading. Acta Neuropathol 112:5–12

    Article  Google Scholar 

  7. Lamont JM, Mcmanamy CS, Pearson AD et al (2004) Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res 10:5482–5493

    Article  CAS  Google Scholar 

  8. Mcmanamy CS, Lamont JM, Taylor RE et al (2003) Morphophenotypic variation predicts clinical behavior in childhood non-desmoplastic medulloblastomas. J Neuropathol Exp Neurol 62:627–632

    Article  Google Scholar 

  9. Giangaspero F, Perilongo G, Fondelli MP et al (1999) Medulloblastoma with extensive nodularity: a variant with favorable prognosis. J Neurosurg 91:971–977

    Article  CAS  Google Scholar 

  10. Suresh TN, Santosh V, Yasha TC et al (2004) Medulloblastoma with extensive nodularity: a variant occurring in the very young-clinicopathological and immunohistochemical study of four cases. Childs Nerv Syst 20:55–60

    Article  CAS  Google Scholar 

  11. Miyahara H, Natsumeda M, Yoshimura J et al (2014) Neuronal differentiation associated with Gli3 expression predicts favorable outcome for patients with medulloblastoma. Neuropathology 34:1–10

    Article  CAS  Google Scholar 

  12. Tsutsui KM, Sano K, Hosoya O et al (2006) Expression dynamics and functional implications of DNA topoisomerase II beta in the brain. Anat Sci Int 81:156–163

    Article  CAS  Google Scholar 

  13. Kenig S, Faoro V, Bourkoula E et al (2016) Topoisomerase IIbeta mediates the resistance of glioblastoma stem cells to replication stress-inducing drugs. Cancer Cell Int 16:58

    Article  Google Scholar 

  14. Chen J, Zhao J, Zhou X et al (2017) Immunohistochemical investigation of topoIIbeta, H3K27me3 and JMJD3 expressions in medulloblastoma. Pathol Res Pract 213:975–981

    Article  CAS  Google Scholar 

  15. Natsumeda M, Aoki H, Miyahara H et al (2011) Induction of autophagy in temozolomide treated malignant gliomas. Neuropathology 31:486–493

    Article  Google Scholar 

  16. Ellison DW, Dalton J, Kocak M et al (2011) Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 121:381–396

    Article  CAS  Google Scholar 

  17. Kaur K, Kakkar A, Kumar A et al (2016) Integrating molecular subclassification of medulloblastomas into routine clinical practice: a simplified approach. Brain Pathol 26:334–343

    Article  CAS  Google Scholar 

  18. Burger PC, Grahmann FC, Bliestle A et al (1987) Differentiation in the medulloblastoma. A histological and immunohistochemical study. Acta Neuropathol 73:115–123

    Article  CAS  Google Scholar 

  19. Northcott PA, Shih DJ, Remke M et al (2012) Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol 123:615–626

    Article  CAS  Google Scholar 

  20. Gomez S, Garrido-Garcia A, Garcia-Gerique L et al (2018) A novel method for rapid molecular subgrouping of medulloblastoma. Clin Cancer Res 24:1355–1363

    Article  CAS  Google Scholar 

  21. Hovestadt V, Smith KS, Bihannic L et al (2019) Resolving medulloblastoma cellular architecture by single-cell genomics. Nature 572:74–79

    Article  CAS  Google Scholar 

  22. Tirosh I, Venteicher AS, Hebert C et al (2016) Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539:309–313

    Article  Google Scholar 

  23. Polkinghorn WR, Tarbell NJ (2007) Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nat Clin Pract Oncol 4:295–304

    Article  CAS  Google Scholar 

  24. Ma Q, Chen Z, Del Barco BI et al (1998) Neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482

    Article  CAS  Google Scholar 

  25. Sun Y, Nadal-Vicens M, Misono S et al (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104:365–376

    Article  CAS  Google Scholar 

  26. Tiwari VK, Burger L, Nikoletopoulou V et al (2012) Target genes of topoisomerase IIbeta regulate neuronal survival and are defined by their chromatin state. Proc Natl Acad Sci USA 109:E934-943

    Article  CAS  Google Scholar 

  27. Baldwin EL, Osheroff N (2005) Etoposide, topoisomerase II and cancer. Current Med Chem Anticancer Agents 5:363–372

    Article  CAS  Google Scholar 

  28. Montecucco A, Zanetta F, Biamonti G (2015) Molecular mechanisms of etoposide. EXCLI J 14:95–108

    PubMed  PubMed Central  Google Scholar 

  29. Marinello J, Delcuratolo M, Capranico G (2018) Anthracyclines as topoisomerase II poisons: from early studies to new perspectives. Int J Mol Sci 19:3480

    Article  Google Scholar 

  30. Mordente A, Meucci E, Martorana GE et al (2017) Topoisomerases and anthracyclines: recent advances and perspectives in anticancer therapy and prevention of cardiotoxicity. Curr Med Chem 24:1607–1626

    Article  CAS  Google Scholar 

  31. Yang X, Li W, Prescott ED et al (2000) DNA topoisomerase IIbeta and neural development. Science 287:131–134

    Article  CAS  Google Scholar 

  32. Lyu YL, Lin CP, Azarova AM et al (2006) Role of topoisomerase IIbeta in the expression of developmentally regulated genes. Mol Cell Biol 26:7929–7941

    Article  CAS  Google Scholar 

  33. Natsumeda M, Miyahara H, Yoshimura J et al (2020) GLI3 is associated with neuronal differentiation in SHH-activated and WNT-activated medulloblastoma. J Neuropathol Exp Neurol 80:129–136

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by AMED under Grant Numbers JP18dm0107105 (M. Yoshida) and JP16kk0205009 (M. Yoshida). This work was also supported by Grants-in Aid from the Research Committee of CNS Degenerative Diseases, Research on Policy Planning and Evaluation for Rare and Intractable Diseases, Health, Labour and Welfare Sciences Research Grants, the Ministry of Health, Labour and Welfare, Japan (K. Nakashima). The authors thank Satoshi Nakata for advices and support regarding statistical analyses using a publicly available genetic dataset of medulloblastomas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Miyahara.

Ethics declarations

Conflict of interest

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Ethical approval

This study was conducted in line with the principles of the Declaration of Helsinki. Approvals were obtained from the institutional review boards of Aichi Medical University (#2020–005), Oita University (#1198), and joint-research faculties. The requirement for informed consent was waived owing to the retrospective nature of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyahara, H., Natsumeda, M., Kanemura, Y. et al. Topoisomerase IIβ immunoreactivity (IR) co-localizes with neuronal marker-IR but not glial fibrillary acidic protein-IR in GLI3-positive medulloblastomas: an immunohistochemical analysis of 124 medulloblastomas from the Japan Children’s Cancer Group. Brain Tumor Pathol 38, 109–121 (2021). https://doi.org/10.1007/s10014-021-00396-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-021-00396-0

Keywords

Navigation