Skip to main content

Advertisement

Log in

Prevention and Control of Water Inrushes from Subseam Karstic Ordovician Limestone During Coal Mining Above Ultra-thin Aquitards

Vorbeugung und Kontrolle von Wassereinbrüchen aus verkarsteten ordovizischen Kalksteinen bei sehr geringmächtigen Grundwassergeringleitern als Liegendbarriere im Kohlebergbau

Prevención y control de las irrupciones de agua desde la piedra caliza ordovícica de la subveta kárstica en la minería de carbón sobre acuitardos ultrafinos

超薄隔水层上煤炭开采的奥陶岩溶灰岩突水防治

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Horizontal directional drilling technology was used to prevent and control water inrushes from the Ordovician limestone strata at the Sangshuping coal mine in the Hancheng mining area by drilling and grouting the contact zone along the top of the aquifer. Considering the hydraulic conductivity of the floor failure zone, we used the modified water inrush coefficient method to estimate the critical thickness of Ordovician limestone that had to be grouted. We carried out directional borehole exploration from both ends of the mining face and combined the results with borehole water pressure tests to determine appropriate grouting techniques and parameters; we then analysed the effectiveness of the grouting. 3-D seismic and ground transient electromagnetics (TEM) were used to detect areas of anomalous resistivity and geologic structure in the mining area, while DC and TEM geophysics were used to detect water-bearing areas ahead of the roadway. After the roadway was developed, TEM, DC resistivity sounding, and audio-magnetotellurics were used to explore water-bearing areas under the roadway and the mine floor. Radio waves were used to detect the structure of the mining face and changes in coal thickness. Finally, based on the results of exploration, an inspection program was devised using conventional boreholes supplemented by directional boreholes to comprehensively evaluate the feasibility of mining under pressure. The study showed that the failure depth of the floor was 15 m and that the top of the Ordovician limestone was no longer water-bearing and was now a relative aquitard. The water inrush coefficient was reduced to less than 0.073 MPa/m, which will ensure safe mining and extend the lower limit of safe mining in the area. This provides a technical reference for prevention and control of Ordovician limestone water disasters in similar coal mines.

Zusammenfassung

Im Kohlebergwerk Sangshuping im Bergbaugebiet Hancheng werden horizontale Richtbohrtechniken eingesetzt, um Liegendwassereinbrüche aus verkarsteten ordovizischen Kalksteingrundwasserleitern zu kontrollieren bzw. verhindern. Hierbei wird in den Kontaktbereich Liegendbarriere/ Grundwasserleiter gebohrt. Unter Berücksichtigung der hydraulischen Leitfähigkeit dieses Bereiches wird ein angepasster Wassereinbruchskoeffizient ermittelt, um die sog. kritische Mächtigkeit der ordovizischen Kalksteinschicht, in denen Verpressungsarbeiten notwendig sind, abzuschätzen. Gerichteten Bohrungen werden von beiden Seiten der Abbaufront durchgeführt, um geeignete Verpressverfahren und -parameter mit Hilfe von Wasserdrucktests zu bestimmen. Im Anschluss wird die Wirksamkeit der Verpressung kontrolliert. Um geologische Strukturen sowie Bereiche mit anomaler Resistivität im Abbaugebiet zu erkennen, kommen 3-D-Seismik und transiente elektromagnetische Bodenmessungen (TEM) zur Anwendung. Geophysikalische Gleichstrom- und TEM-Methoden werden eingesetzt, um wasserführende Bereiche vor der Errichtung von Fahrstrecken zu erkennen. TEM-, DC-Widerstandssondierungs- und Magnetotellurik-Methoden werden zudem genutzt, um wasserführende Bereiche unter der Fahrstrecke bzw. Abbausohle zu erkunden. Der Einsatz von Radiowellen ermöglicht, Abbaustrecken zu strukturieren und Änderungen der Flözmächtigkeit zu erkennen. Basierend auf den Erkundungsergebnissen wurde ein Untersuchungsprogramm mit konventionellen und gerichteten Bohrungen konzipiert, um die Machbarkeit des Abbaus unter in-situ Bedingungen umfassend zu bewerten. Als Untersuchungsergebnis wird die Mächtigkeit der Liegendbarriere mit 15 m bestimmt, in der die Einheiten einschließlich ordovizischer Kalksteine grundwasserstauend wirken. Der Wassereinbruchskoeffizient wird so auf weniger als 0,073 MPa/m reduziert, womit ein sicherer Abbau gewährleistet und der untere Grenzbereich für einen solchen in diesem Gebiet erweitert wird. Die Studie kann als technische Referenzuntersuchung zur Vorbeugung vor katastrophalen Wassereinbrüchen aus verkarsteten ordovizischen Kalksteinen in Kohlebergwerken genutzt werden.

Resumen

La tecnología de perforación direccional horizontal se utilizó para prevenir y controlar las irrupciones de agua de los estratos de caliza ordovícica en la mina de carbón de Sangshuping, en la zona minera de Hancheng, mediante la perforación y la inyección de lechada en la zona de contacto a lo largo de la parte superior del acuífero. Teniendo en cuenta la conductividad hidráulica de la zona de fallo del suelo, utilizamos el método del coeficiente de irrupción de agua modificado para estimar el espesor crítico de la caliza ordovícica que debía ser inyectada. Realizamos una perforación direccional desde ambos extremos del frente de la mina y combinamos los resultados con pruebas de presión de agua para determinar las técnicas y parámetros de inyección adecuados; luego analizamos la eficacia de la inyección. Se utilizaron métodos de transiente electromagnético sísmico 3D y de tierra (TEM) para detectar áreas de resistividad anómala y estructura geológica en el área de la mina, mientras que las geofísicas de DC y TEM fueron utilizadas para detectar áreas con agua. Después de que se desarrollara la calzada, se utilizaron TEM, el sondeo de resistividad DC y la audio-magnetotelúrica para explorar las áreas con agua bajo la calzada y el suelo de la mina. Se utilizaron ondas de radio para detectar la estructura del frente de la mina y los cambios en el espesor del carbón. Por último, sobre la base de los resultados de la exploración, se ideó un programa de inspección mediante perforaciones convencionales complementadas con perforaciones direccionales para evaluar exhaustivamente la viabilidad de la minería bajo presión. El estudio demostró que la profundidad de la falla en el suelo era de 15 m y que la parte superior de la caliza ordovícica ya no tenía agua y era ahora un acuitardo relativo. El coeficiente de irrupción de agua se redujo a menos de 0,073 MPa/m, lo que garantizará una minería segura y ampliará el límite inferior de la minería segura en la zona. Esto proporciona una referencia técnica para la prevención y el control de los desastres de agua en minas de carbón similares.

概要

利用水平定向钻探技术沿含水层顶部接触带钻探和注浆, 用以防治韩城矿区桑树坪矿的奥陶灰岩水突水. 考虑了底板破坏带的渗透系数, 采用修正的突水系数法估算了需要注浆的奥陶系灰岩临界厚度. 从工作面两端定向钻探, 结合孔内压水试验, 确定合理注浆方法与参数; 之后, 再分析注浆效果. 利用三维地震和大地瞬变电磁 (Ground TEM) 探测采区电阻率异常区和地质构造, 同时采用直流电法和瞬变电磁法探测巷道前方富水. 巷道开拓之后, 用瞬变电磁 (TEM), 直流电阻率测深和音频大地电磁测深法探查巷道下方和底板的富水区. 无线电波探测工作面内部构造和煤厚变化. 最后, 据勘探结果, 设计了以常规钻探辅定向钻探的检测方案, 全面评价了煤层带压开采的可行性. 研究表明, 底板破坏深度15m, 奥陶系顶部灰岩已不富水, 成为了相对隔水层. 突水系数已降至小于0.073MPa/m, 能够保障安全开采, 延伸了区内安全开采下限. 研究为类似条件煤矿的奥陶系灰岩水害防治提供了技术参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Dai GL, Xue XY, Xu K, Dong L, Niu C (2018) A GIS-based method of risk assessment on no. 11 coal-floor water inrush from Ordovician limestone in Hancheng mining area. China. Arab J Geosci 11:714

    Article  Google Scholar 

  • Dong SN, Zheng LW, Tang SL, Shi PZ (2020) A scientometric analysis of trends in coal mine water inrush prevention and control for the period 2000–2019. Mine Water Environ 39:3–12

    Article  Google Scholar 

  • Hu YB, Li WP, Wang QQ, Liu SL, Wang ZK (2019) Evaluation of water inrush risk from coal seam floors with an AHP–EWM algorithm and GIS. Environ Earth Sci 78(10):290

    Article  Google Scholar 

  • Li PY (2018) Mine water problems and solutions in China. Mine Water Environ 37:217–221

    Article  Google Scholar 

  • Li SC, Liu B, Nie LC, Liu ZY, Tian MZ, Wang SR, Su MX, Guo Q (2015) Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: a review. J Rock Mech Geotech Eng 7(4):469–478

    Article  Google Scholar 

  • Li B, Wu Q, Duan XQ, Chen MY (2018a) risk analysis model of water inrush through the seam floor based on set pair analysis. Mine Water Environ 37:281–287

    Article  Google Scholar 

  • Li WP, Liu Y, Qiao W, Zhao CX, Yang DD, Guo QC (2018b) An improved vulnerability assessment model for floor water bursting from a confined aquifer based on the water inrush coefficient method. Mine Water Environ 37:196–204

    Article  Google Scholar 

  • Liu WT, Mu DR, Xie XX, Li Y, Wang DH (2018) Sensitivity analysis of the main factors controlling floor failure depth and a risk evaluation of floor water inrush for an inclined coal seam. Mine Water Environ 37:636–648

    Article  Google Scholar 

  • NCMSA (National Coal Mine Safety Administration) (2018) The Detailed Rules for Water Disaster Prevention and Control of Coal Mines. Coal Industry Publishing House of China, Beijing, pp 62–63 (in Chinese)

  • Qiu M, Shi LQ, Teng C, Zhou Y (2017) Assessment of water inrush risk using the fuzzy Delphi analytic hierarchy process and Grey relational analysis in the Liangzhuang Coal Mine, China. Mine Water Environ 36:39–50

    Article  Google Scholar 

  • Vaskou P, de Quadros EF, Kanji MA, Johnson T, Ekmekci M (2019) ISRM suggested method for the Lugeon test. Rock Mech Rock Eng 52:4155–4174

    Article  Google Scholar 

  • Water-resisting property and key technologies of grouting reconstruction of the Upper Ordovician limestone in north China’s coalfields, Thesis, Xi’an Research Institute of China Coal Technology and Engineering Group Corporation https://doi.org/10.1007/978-3-030-40116-0

  • Wang QQ, Li WO, Liu QQ (2019) Geological composition and structure of the filling zone and its water-resisting property evaluation on top of the Ordovician limestone. Geofluids. https://doi.org/10.1155/2019/5140605

    Article  Google Scholar 

  • Wu Q, Wang MY (2006) Characterization of water bursting and discharge into underground mines with multi-layered ground-water flow systems in the north China coal basin. Hydrogeol J 14(6):882–893

    Article  Google Scholar 

  • Wu Q, Liu YZ, Yang L (2011) Using the vulnerable index method to assess the likelihood of a water inrush through the floor of a multi-seam coal mine in China. Mine Water Environ 30:54–60

    Article  Google Scholar 

  • Wu Q, Fan SK, Zhou WF, Liu SQ (2013) Application of the analytic hierarchy process to assessment of water inrush: a case study for the no. 11 coal seam in the Sanhejian Coal Mine. China. Mine Water Environ 32(3):229–238

    Article  Google Scholar 

  • Wu Q, Liu YZ, Wu XL, Liu SQ, Sun WJ, Zeng YF (2016) Assessment of groundwater inrush from underlying aquifers in Tunbai Coal Mine, Shanxi province, China. Environ Earth Sci 75(9):737

    Article  Google Scholar 

  • Wu Q, Guo XM, Shen JJ, Xu S, Liu SQ, Zeng YF (2017) Risk assessment of water inrush from aquifers underlying the Gushuyuan Coal Mine, China. Mine Water Environ 36:96–103

    Article  Google Scholar 

  • Xue GQ, Chen W, Cheng JL, Liu SC, Yu JC, Lei KX, Guo WB, Feng XH (2019) A review of electrical and electromagnetic methods for coal mine exploration in China. IEEE Access 7:177332–177341

    Article  Google Scholar 

  • Yang ZB, Dong SN (2018) Influence factors analysis of quantitative evaluation of single borehole grouting effect by water pressure test. Safe Coal Mines 49(6):187–194 (in Chinese)

    Google Scholar 

  • Yang C, Liu SD, Wu RX (2017) Quantitative prediction of water volumes within a coal mine underlying limestone strata using geophysical methods. Mine Water Environ 36:51–58

    Article  Google Scholar 

  • Yin HY, Wei JC, Liliana L, Guo JB, Xie DL, Li ZL, Zhao P (2016) Numerical simulation of water flow from the coal seam floor in a deep longwall mine in China. Mine Water Environ 35:243–252

    Article  Google Scholar 

  • Zhang JC, Liu TQ (1990) On depth of fissured zone in seam floor resulted from coal extraction and its distribution characteristics. J China Coal Soc 15(2):46–55 (in Chinese)

    Google Scholar 

  • Zhang WQ, Li B, Yuan JD (2016) Detection and evaluation of crack development near the fault zone under the influence of coal mining. Electron J Geotech Eng 21(22):6841–6850

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grant 2017YFC0804102), and the Shaanxi Key Laboratory of Preventing and Controlling Coal Mine Water Hazard. The authors express their sincere thanks to the reviewers for their valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Li.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Dong, S. & Liu, K. Prevention and Control of Water Inrushes from Subseam Karstic Ordovician Limestone During Coal Mining Above Ultra-thin Aquitards. Mine Water Environ 40, 345–356 (2021). https://doi.org/10.1007/s10230-021-00765-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-021-00765-3

Keywords

Navigation