Skip to main content
Log in

A Microbial Consortium Removing Phosphates under Conditions of Cyclic Aerobic-Anaerobic Cultivation

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Formation of a community of phosphate-accumulating microorganisms in a laboratory sequential batch reactor (SBR) ensuring alternated aerobic and anaerobic conditions during periodic removal and addition of the medium were investigated. The bioreactor removed 50% phosphorus from the incoming medium after 22 days from the start-up. Microscopy and X-ray microassay revealed the of cells of diverse morphology that contained phosphorus-enriched granules. High-throughput sequencing of the 16S rRNA gene fragments carried out on days 0, 8, 15, and 22 showed changes in the community composition and its decreasing diversity. On day 22, approximately twofold increase of the relative abundances of Bacteroidetes (up to 43% of the 16S rRNA gene sequences) and Proteobacteria of the classes alpha (up to 15%) and beta (up to 27%) was observed. While at the onset of the reactor operation, typical PAOs related to “Candidatus Accumulibacter” (class Betaproteobacteria) constituted 0.2% of the community, they were not detected on day 22. The most likely PAO candidates were beta-proteobacteria of the genus Dechloromonas, the share of which increased from 0.7 to 11% by the time of the highest phosphorus removal from the inflowing medium. The relative abundance of heterotrophs of the genus Zoogloea (family Rhodocyclaceae) increased from 0.1 to 11.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Artan, N. and Orhon, D., Mechanism and design of sequencing batch reactors for nutrient removal, London: IWA, 2005, vol. 19, p. 116.

    Google Scholar 

  2. Barr, J.J., Dutilh, B.E., Skennerton, C.T., Fukushima, T., Hastie, M.L., Gorman, J.J., Tyson, G.W., and Bond, P.L., Metagenomic and metaproteomic analyses of Accumulibacter phosphatis enriched floccular and granular biofilm, Environ. Microbiol., 2016, vol. 18, pp. 273–287.

    CAS  PubMed  Google Scholar 

  3. Bond, P.L., Hugenholtz, P., Keller, J., and Blackall, L.L., Bacterial community structures of phosphate-removing and nonphosphate-removing activated sludges from sequencing batch reactors, Appl. Environ. Microbiol., 1995, vol. 61, pp. 1910–1916.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dasgupta, S., De Clippeleir, H., and Goel, R., Short operational differences support granulation in a lab scale reactor in comparison to another conventional activated sludge reactor, Bioresource Technol., 2019, vol. 271, pp. 417–426.

    CAS  Google Scholar 

  5. Dorofeev A.G., Nikolaev, Yu.A., Mardanov, A.V., and Pimenov, N.V.,Cyclic metabolism as a mode of microbial existence, Microbiology (Moscow), 2019, vol. 88, no. 4, pp. 402–415.

    CAS  Google Scholar 

  6. Edgar R.C., Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 2010, vol. 26, no. 19, pp. 2460–2461.

    CAS  Google Scholar 

  7. Fan, Z., Zeng, W., Wang, B., Guo, Y., Meng, Q., and Peng, Y., Transcriptional responses of “Candidatus Accumulibacter” clades to environmental dynamics in enhanced biological phosphorus removal, Bioresource Technol., 2020, p. 123108.

  8. Fernández-Gómez, B., Richter, M., Schüler M., Pinhassi, J., Acinas, S.G., González, J.M., and Pedrós-Alió, C., Ecology of marine Bacteroidetes: a comparative genomics approach, ISME J., 2013, vol. 7, pp. 1026–1037.

    PubMed  PubMed Central  Google Scholar 

  9. Figdore, B.A., Stensel, H.D., and Winkler, M.K.H., Comparison of different aerobic granular sludge types for activated sludge nitrification bioaugmentation potential, Bioresource Technol., 2018, vol. 251, pp. 2189–2196.

  10. Flowers, J.J., He, S., Malfatti, S., del Rio, T.G., Tringe, S.G., Hugenholtz, P., and McMahon, K.D., Comparative genomics of two ‘Candidatus Accumulibacter’ clades performing biological phosphorus removal, The ISME J., 2013, vol. 7, no. 12, pp. 2301–2314.

    CAS  PubMed  Google Scholar 

  11. Frey, B., Rime, T., Phillips, M., Stierli, B., Hajdas, I., Widmer, F., and Hartmann, M., Microbial diversity in European alpine permafrost and active layers, FEMS Microbiol. Ecol., 2016, vol. 92, fiw018. https://doi.org/10.1093/femsec/fiw018

  12. Hahnke, R.L., Meier-Kolthoff, J.P., García-López, M., Mukherjee, S., Huntemann, M., Ivanova, N.N., Woyke, T., Kyrpides, N.C., Klenk, H.P., and Göker, M., Genome-based taxonomic classification of Bacteroidetes, Front. Microbiol., 2016, vol. 20, p. 2003. https://doi.org/10.3389/fmicb.2016.02003

    Article  Google Scholar 

  13. Hesselmann, R.P., Werlen, C., Hahn, D., van der Meer, J.R., and Zehnder, A.J.B., Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge, Syst. Appl. Microbiol., 1999, vol. 22, pp. 454–465.

    CAS  PubMed  Google Scholar 

  14. Hug, L.A., Baker, B.J., Anantharaman, K., Brown, C.T., Probst, A.J., Castelle, C.J., Butterfield, C.N., Hernsdorf, A.W., Amano, Y., Ise, K., Suzuki, Y., Dudek, N., Relman, D.A., Finstad, K.M., Amundson, R., et al., A new view of the tree of life, Nat. Microbiol., 2016, vol. 1, p. 16048. https://doi.org/10.1038/nmicrobiol.2016.48

    Article  CAS  PubMed  Google Scholar 

  15. Kirkegaard, R.H., McIlroy, S.J., Kristensen, J.M., Nierychlo, M., Karst, S.M., Dueholm, M.S., Albertsen, M., and Nielsen, P.H., The impact of immigration on microbial community composition in full-scale anaerobic digesters, Sci. Rep., 2017, vol. 7, p. 9343.  https://doi.org/10.1038/s41598-017-09303-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, S., Daigger, G.T., Liu, B., Zhao, W., and Liu, J., Enhanced performance of simultaneous carbon, nitrogen and phosphorus removal from municipal wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor (AOA-SBR) system by alternating the cycle times, Bioresource Technol., 2020, vol. 301, p. 122750. https://doi.org/10.1016/j.biortech.2020.122750

    Article  CAS  Google Scholar 

  17. Mao, Y., Graham, D.W., Tamaki, H., and Zhang, T., Dominant and novel clades of Candidatus “Accumulibacter phosphatis” in 18 globally distributed full-scale wastewater treatment plants, Sci. Rep., 2015, vol. 5, article 11857.

    PubMed  PubMed Central  Google Scholar 

  18. Mao, Y., Zhang, X., Xia, X., Zhong, H., and Zhao, L., Versatile aromatic compound-degrading capacity and microdiversity of Thauera strains isolated from a coking wastewater treatment bioreactor, J. Ind. Microbiol. Biotechnol., 2010, vol. 37, pp. 927–934.

    CAS  PubMed  Google Scholar 

  19. Maszenan, A.M., Seviour, R.J., Patel, B.K.C., Schu-mann, P., Burghardt, J., Tokiwa, Y., and Stratton, H.M., Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov. Int. J. Syst. Evol. Microbiol., 2000, vol. 50, pp. 593–603.

    CAS  PubMed  Google Scholar 

  20. Mechichi, T., Stackebrandt, E., Gad’on, N., and Fuchs, G., Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov., Arch. Microbiol., 2002, vol. 178, pp. 26–35.

    CAS  PubMed  Google Scholar 

  21. Mino, T., Van Loosdrecht, M.C.V, and Heijnen, J.J., Microbiology and biochemistry of the enhanced biological phosphate removal process, Water Res., 1998, vol. 32, no. 11, pp. 3193–3207.

    CAS  Google Scholar 

  22. Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawaharasa-ki, M., Masuda, K., and Kamagata, Y., Microlunatus phosphovorus gen. nov., sp. nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge, Int. J. Syst. Bacteriol., 1995, vol. 45, pp. 17–22.

    CAS  PubMed  Google Scholar 

  23. Nguyen, H.T., Nielsen, J.L., and Nielsen, P.H., “Candidatus Halomonas phosphatis,” a novel polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants, Environ. Microbiol., 2012, vol. 14, no. 10, pp. 2826–2837.

    CAS  PubMed  Google Scholar 

  24. Nielsen, P.H., McIlroy, S.J., Albertsen, M., and Nierychlo, M., Re-evaluating the microbiology of the enhanced biological phosphorus removal process, Curr. Opin. Biotechnol., 2019, vol. 57, pp. 111–118.

    CAS  PubMed  Google Scholar 

  25. Onuki, M., Satoh, H., and Mino, T., Analysis of microbial community that performs enhanced biological phosphorus removal in activated sludge fed with acetate, Water Sci. Technol., 2002, vol. 6, nos. 1–2, pp. 145–153.

    Google Scholar 

  26. Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewksi, A., Chaumeil, P.-A., and Hugenholtz, P., A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life, Nat. Biotechnol., 2018, vol. 36, pp. 996–1004.

    CAS  PubMed  Google Scholar 

  27. Paula, F.S., Chin, J.P., Schnürer, A., Müller, B., Manesiotis, P., Waters, N., Macintosh, K.A., Quinn, J.P., Co-nnolly, J., Abram, F., McGrath, J.W., and O’Flaherty, V., The potential for polyphosphate metabolism in Archaea and anaerobic polyphosphate formation in Methanosarcina mazei, Sci. Rep., 2019, vol. 9, no. 1, pp. 1–12.

    Google Scholar 

  28. PND F (Nature Conservation Standard Documents) 14.1:2:4.248-07, Method for measuring mass concentrations of orthophosphates, polyphosphates, and total phosphorusin samples of drinking, natural, and wastewater by the photometric method, Moscow, 2016. https://files.stroyinf.ru/Data2/1/4293773/4293773265.htm

  29. PND F (Nature Conservation Standard Documents) 14.1:2:4.254-09, Quantitative chemical analysis of water. Methods for measuring mass concentrations of suspended and calcined weighed materials in samples of drinking, natural, and wastewater by the gravimetric method, Moscow, 2017. http://docs.cntd.ru/document/556339176

  30. Qasim, S.R. and Zhu, G., Wastewater Treatment and Reuse, Theory and Design Examples, vol. 1: Principles and Basic Treatment, CRC, 2017.

  31. Qiu, G., Zuniga-Montanez, R., Law, Y., Thi, S.S., Nguyen, T.Q.N., Eganathan, K., Liu, X., Nielsen, P.H., Williams, R.B.H., and Wuertz, S., Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources, Water Res., 2019, vol. 149, pp. 496–510.

    CAS  PubMed  Google Scholar 

  32. Ren, S., Li, X., Yin, X., Luo, C., and Liu, F., Characteristics of intracellular polyphosphate granules and phosphorus-absorption of a marine polyphosphate-accumulating bacterium, Halomonas sp. YSR-3, J. Oceanol. Limnol., 2020, vol. 38, no. 1, pp. 195–203.

    CAS  Google Scholar 

  33. Roinestad, F.A. and Yall, I., Volutin granules in Zoogloea ramigera, Appl. Microbiol., 1970, vol. 19, no. 6, pp. 973–979.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rothe, B., Fischer, A., Hirsch, P., Sittig, M., and Stackebrandt, E., The phylogenetic position of the budding bacteria Blastobacter aggregatus and Gemmobacter aquatilis gen. nov., sp. nov., Arch, Microbiol., 1987, vol. 147, pp. 92–99.

    CAS  Google Scholar 

  35. Rubio-Rincon, F.J., Lopez-Vazquez, C.M., Welles, L., van Loosdrecht, M.C.M., and Brdjanovic, D., Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes, Water Res., 2017, vol. 120, pp. 156–164.

    CAS  PubMed  Google Scholar 

  36. Rubio-Rincón, F.J., Welles, L., Lopez-Vazquez, C.M., Nierychlo, M., Abbas, B., Geleijnse, M., Nielsen, P.H., van Loosdrecht, M.C.M., and Brdjanovic, D., Long-term effects of sulphide on the enhanced biological removal of phosphorus: the symbiotic role of Thiothrix caldifontis, Water Res., 2017, vol. 116, pp. 53–64.

    PubMed  Google Scholar 

  37. Seviour, R.J., Mino, T., and Onuki M., The microbiology of biological phosphorus removal in activated sludge systems, FEMS Microbiol. Rev., 2003, vol. 27, pp. 99–127.

    CAS  PubMed  Google Scholar 

  38. Shao, Y., Chung, B.S., Lee, S.S., Park, W., Lee, S.S., and Jeon, C.O., Zoogloea caeni sp. nov., a floc-forming bacterium isolated from activated sludge, Int. J. Syst. Evol. Microbiol., 2009, vol. 59, no. 3, pp. 526–530.

    CAS  PubMed  Google Scholar 

  39. Skennerton, C.T., Barr, J.J., Slater, F.R., Bond, P.L., and Tyson G.W., Expanding our view of genomic diversity in Candidatus Accumulibacter clades, Environ. Microbiol., 2015, vol. 17, no. 5, pp. 1574–1585.

    CAS  PubMed  Google Scholar 

  40. Stokholm-Bjerregaard, M., McIlroy, S.J., Nierychlo, M., Karst, S.M., Albertsen, M., and Nielsen, P.H., A critical assessment of the microorganisms proposed to be important to enhanced biological phosphorus removal in full-scale wastewater treatment systems, Front. Microbiol., 2017, vol. 8, p. 718. https://doi.org/10.3389/fmicb.2017.00718

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tchobanoglous, G., Burton F.L., and Stensel, H.D., Wastewater Engineering: Treatment and Reuse, McGraw Hill, N.Y.: Metcalf and Eddy, 2014.

  42. Terashima, M., Yama, A., Sato, M., Yumoto, I., Kamagata, Y., and Kato, S., Culture-dependent and -independent identification of polyphosphate-accumulating Dechloromonas spp. predominating in a full-scale oxidation ditch wastewater treatment plant, Microbes Environ., 2016, vol. 31, no. 4, pp. 449–455.

    PubMed  PubMed Central  Google Scholar 

  43. Thomas, F., Hehemann, J.-H., Rebuffet, E., Czjzek, M., and Michel, G., Environmental and gut Bacteroidetes: the food connection, Front. Microbiol., 2011, vol. 2, article 93.

    PubMed  PubMed Central  Google Scholar 

  44. Van Loosdrecht, M.C.M., Hooijmans, C.M., Brdjanovic, D., and Heijnen, J.J., Biological phosphorus removal processes, Appl. Microbiol. Biotechnol., 1997, vol. 48, pp. 289–296.

    CAS  Google Scholar 

  45. Vasilyeva, L.V., Omelchenko, M.V., Berestovskaya, Y.Y., Lysenko, A.M., Abraham, W.R., Dedysh, S.N., and Zavarzin, G A., Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil, Int. J. Syst. Evol. Microbiol., 2006, vol. 56, no. 9, pp. 2083–2088.

    CAS  PubMed  Google Scholar 

  46. Welles, L., Abbas, B., Sorokin, D.Y., Lopez-Vazquez, C.M., Hooijmans, C.M., van Loosdrecht, M., and Brdjanovic, D., Metabolic response of “Candidatus Accumulibacter Phosphatis” clade II C to changes in influent P/C ratio, Front. Microbiol., 2017, vol. 7, p. 2121.

    PubMed  PubMed Central  Google Scholar 

  47. Wentzel, M.C., Comeau, Y., Ekama, G.A., van Loosdrecht, M.C.M., and Brdjanovic, D., Enhanced biological nutrient removal, in Biological Wastewater Treatment. Principles, Modelling and Design, Henze, M., van Loosdrecht, M.C.M., Ekama, G.A., and Brdjanovic, D., Eds., London: IWA, 2008, pp. 155–220.

    Google Scholar 

  48. Wexler, M., Richardson, D.J., and Bond, P.L., Radiolabelled proteomics to determine differential functioning of Accumulibacter during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal, Environ. Microbiol., 2009, vol. 11, no. 12, pp. 3029–3044.

    CAS  PubMed  Google Scholar 

  49. Wilmes, P., Andersson, A.F., Lefsrud, M.G., Wexler, M., Shah, M., Zhang, B., Hettich, R.L., Bond, P.L., VerBerkmoes, N.C., and Banfield, J.F., Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal, ISME J., 2008, vol. 2, pp. 853–864.

    CAS  PubMed  Google Scholar 

  50. Wu, L., Ning, D., Zhang, B., Li, Y., Zhang, P., Shan, X., and Ling, F., Global diversity and biogeography of bacterial communities in wastewater treatment plants, Nature Microbiol., 2019, vol. 4, no. 7, pp. 1183–1195.

    CAS  Google Scholar 

  51. Yu, K. and Zhang, T., Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge, PLoS One, 2012, vol. 7, no. 5, e38183.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zeng, W., Zhang, L., Fan, P., Guo, J., and Peng, Y., Community structures and population dynamics of “Candidatus Accumulibacter” in activated sludges of wastewater treatment plants using ppk1 as phylogenetic marker, J. Environ. Sci., 2018, vol. 67, pp. 237–248.

    Google Scholar 

  53. Zhang, T., Shao, M.-F., and Ye, L., 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants, ISME J., 2012, vol. 6, pp. 1137–1147.                                                  

    CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, projects 18-29-25016 (setup development and assembly, morphological analysis of the microbial community, microscopy, chemical analysis, and molecular analysis of ther microbial community during the bioreactor operation) and 18-34-00627 (analysis of the composition of the activated sludge microbial community) and was also partially supported by the Russian Federation Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Contributions

VAG and AGD assembled and maintained the laboratory setup for PAO cultivation; VVS and IKD carried out electron microscopy; YYB, AVP, YAN, and NVP carried out chemical analysis, microscopy, data analysis, and writing of the article; RYK, AVB, NVR, and AVB isolated metagenomic DNA, sequenced and analyzed the 16S rRNA gene sequences, and participated in the preparation of the manuscript.

Corresponding author

Correspondence to A. V. Pelevina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelevina, A.V., Berestovskaya, Y.Y., Grachev, V.A. et al. A Microbial Consortium Removing Phosphates under Conditions of Cyclic Aerobic-Anaerobic Cultivation. Microbiology 90, 66–77 (2021). https://doi.org/10.1134/S0026261721010082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721010082

Keywords:

Navigation