Skip to main content
Log in

Micromycete Lipids and Stress

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Among the living organisms, microscopic fungi are unique in their ability to occupy diverse ecological niches due to the evolutionarily formed mechanisms of adaptation to a broad range of climatic and technogenic factors. One approach to understanding the mechanisms of adaptation to changing environmental conditions is associated with lipid metabolism. The review provides a critical analysis of publications and our own experimental data on the variability of micromycete lipids under the influence of stress factors and of the possible related adaptive mechanisms. The functional, structural, and quantitative changes in fungal lipids were analyzed under the conditions of osmotic, thermal, and cold influences, as well as toxicity. Biochemical variations in the composition of phospholipids and other membrane lipids are characterized as diverse and ambiguous, depending on the degree of exposure, the initial lipid composition, genetic resistance of fungi, and their ability to adapt to extreme conditions. The role of lipid metabolism in the overall integral response of fungal cells to stress is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Alvarez, F.J., Douglas, L.M., and Konopka, J.B., Sterol-rich plasma membrane domains in fungi, Eukaryot. Cell, 2007, vol. 6, pp. 755–763. https://doi.org/10.1128/EC.00008-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Athanasopoulos, A., André, B., Sophianopoulou, V., and Gournas, C., Fungal plasma membrane domains, FEMS Microbiol. Lett., 2019, vol. 43, pp. 642–673.

    Article  CAS  Google Scholar 

  3. Azevedo, M.-M., Carvalho, A., Pascoal, C., Rodrigues, F., and Cássio, F., Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi, Sci. Total Environ., 2007, vol. 377, pp. 233–243. https://doi.org/10.1016/j.scitotenv.2007.02.027

    Article  CAS  PubMed  Google Scholar 

  4. Baldrian, P., Effect of heavy metals on saprotrophic soil fungi, in Soil Heavy Metals, Sherameti, I. and Varma, A., Eds., 2010, Soil Biology, vol. 19. https://doi.org/10.1007/978-3-642-02436-8

    Book  Google Scholar 

  5. Ballweg, S., Sezgin, E., Doktorova, M., Covino, R., Reinhard, J., Wunnicke, D., Hänelt, I., Levental, I., Hummer, G., and Ernst, R., Regulation of lipid saturation without sensing membrane fluidity, Nat. Commun., 2020, vol. 11, pp. 1–13. https://doi.org/10.1038/s41467-020-14528-1

    Article  CAS  Google Scholar 

  6. Balogh, G., Péter, M., Glatz, A., Gombos, I., Török, Z., Horváth, I., Harwood, J.L., and Vigh, L., Key role of lipids in heat stress management, FEBS Lett., 2013, vol. 587, pp. 1970–1980. https://doi.org/10.1016/j.febslet.2013.05.016

    Article  CAS  PubMed  Google Scholar 

  7. Barman, A., Gohain, D., Bora, U., and Tamuli, R., Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi, Microbiol. Res., 2018, vol. 209, pp. 55–69. https://doi.org/10.1016/j.micres.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  8. Bernat, P., Gajewska, E., Szewczyk, R., Słaba, M., and Długoński, J., Tributyltin (TBT) induces oxidative stress and modifies lipid profile in the filamentous fungus Cunninghamella elegans, Environ. Sci. Pollut. Res., 2014, vol. 21, pp. 4228–4235. https://doi.org/10.1007/s11356-013-2375-5

    Article  CAS  Google Scholar 

  9. Brewster, J., de Valoir, T., Dwyer, N., Winter, E., and Gustin, M., An osmosensing signal transduction pathway in yeast, Science, 1993, vol. 259, pp. 1760–1763. https://doi.org/10.1126/science.7681220

    Article  CAS  PubMed  Google Scholar 

  10. Bruder Nascimento, A.C., Dos Reis, T.F., de Castro, P.A., Hori, J.I., Bom, V.L.P., de Assis, L.J., Ramalho, L.N.Z., Rocha, M.C., Malavazi, I., Brown, N.A., Valiante, V., Brakhage, A.A., Hagiwara, D., and Goldman, G.H., Mitogen activated protein kinases SakA HOG1 and MpkC collaborate for Aspergillus fumigatus virulence, Mol. Microbiol., 2016, vol. 100, pp. 841–859. https://doi.org/10.1111/mmi.13354

    Article  CAS  PubMed  Google Scholar 

  11. Calonne, M., Fontaine, J., Debiane, D., Laruelle, F., Grandmougin-Ferjani, A., and Lounès-Hadj Sahraoui, A., The arbuscular mycorrhizal Rhizophagus irregularis activates storage lipid biosynthesis to cope with the benzo[a]pyrene oxidative stress, Phytochemistry, 2014, vol. 97, pp. 30–37. https://doi.org/10.1016/j.phytochem.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  12. Catlett, N.L., Yoder, O.C., and Turgeon, B.G., Whole-genome analysis of two-component signal transduction genes in fungal pathogens, Eukaryot. Cell, 2003, vol. 2, pp. 1151–1161. https://doi.org/10.1128/EC.2.6.1151-1161.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cazzolli, R., Shemon, A.N., Fang, M.Q., and Hughes, W.E., Phospholipid signalling through phospholipase D and phosphatidic acid, IUBMB Life, 2006, vol. 58, pp. 457–461. https://doi.org/10.1080/15216540600871142

    Article  CAS  PubMed  Google Scholar 

  14. Chen, P.W., Fonseca, L.L., Hannun, Y.A., and Voit, E.O., Coordination of rapid sphingolipid responses to heat stress in yeast, PLoS Comput. Biol., 2013, vol. 9, art. e1003078. https://doi.org/10.1371/journal.pcbi.1003078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cordero, R.J.B., Robert, V., Cardinali, G., Arinze, E.S., Thon, S.M., and Casadevall, A., Impact of yeast pigmentation on heat capture and latitudinal distribution, Curr. Biol., 2018, vol. 28, pp. 2657–2664.e3. https://doi.org/10.1016/j.cub.2018.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Covino, R., Ballweg, S., Stordeur, C., Michaelis, J.B., Puth, K., Wernig, F., Bahrami, A., Ernst, A.M., Hummer, G., and Ernst, R., A eukaryotic sensor for membrane lipid saturation, Mol. Cell, 2016, vol. 63, pp. 49–59. https://doi.org/10.1016/j.molcel.2016.05.015

    Article  CAS  PubMed  Google Scholar 

  17. Cowart, L.A., Gandy, J.L., Tholanikunnel, B., and Hannun, Y.A., Sphingolipids mediate formation of mRNA processing bodies during the heat-stress response of Saccharomyces cerevisiae, Biochem. J., 2010, vol. 431, pp. 31–38. https://doi.org/10.1042/BJ20100307

    Article  CAS  PubMed  Google Scholar 

  18. Debiane, D., Calonne, M., Fontaine, J., Laruelle, F., Grandmougin-Ferjani, A., and Lounes-Hadj Sahraoui, A., Lipid content disturbance in the arbuscular mycorrhizal, Glomus irregulare grown in monoxenic conditions under PAHs pollution, Fungal Biol., 2011, vol. 115, pp. 782–792. https://doi.org/10.1016/j.funbio.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  19. Ding, X., Liu, K., Lu, Y., and Gong, G., Morphological, transcriptional, and metabolic analyses of osmotic-adapted mechanisms of the halophilic Aspergillus montevidensis ZYD4 under hypersaline conditions, Appl. Microbiol. Biotechnol., 2019, vol. 103, pp. 3829–3846. https://doi.org/10.1007/s00253-019-09705-2

    Article  CAS  PubMed  Google Scholar 

  20. Epstein, S. and Riezman, H., Sphingolipid signaling in yeast: potential implications for understanding disease, Front. Biosci., 2013, vol. E5, pp. 97–108. https://doi.org/10.2741/e599

    Article  CAS  Google Scholar 

  21. Ernst, R., Ejsing, C.S., and Antonny, B., Homeoviscous adaptation and the regulation of membrane lipids, J. Mol. Biol., 2016, vol. 428, pp. 4776–4791. https://doi.org/10.1016/j.jmb.2016.08.013

    Article  CAS  PubMed  Google Scholar 

  22. Escribá, P.V., González-Ros, J.M., Goñi, F.M., Kinnunen, P.K.J., Vigh, L., Sánchez-Magraner, L., Fernández, A.M., Busquets, X., Horváth, I., and Barceló-Coblijn, G., Membranes: A meeting point for lipids, proteins and therapies: Translational Medicine, J. Cell. Mol. Med., 2008, vol. 12, pp. 829–875. https://doi.org/10.1111/j.1582-4934.2008.00281.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Espenshade, P.J. and Hughes, A.L., Regulation of sterol synthesis in eukaryotes, Annu. Rev. Genet., 2007, vol. 41, pp. 401–427. https://doi.org/10.1146/annurev.genet.41.110306.130315

    Article  CAS  PubMed  Google Scholar 

  24. Fassler, J.S. and West, A.H., Histidine phosphotransfer proteins in fungal two-component signal transduction pathways, Eukaryot. Cell, 2013, vol. 12, pp. 1052–1060. https://doi.org/10.1128/EC.00083-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fernandes, C.M., Goldman, G.H., and Del Poeta, M., Biological roles played by sphingolipids in dimorphic and filamentous fungi, MBio., 2018, vol. 9, pp. 1–13. https://doi.org/10.1128/mBio.00642-18

    Article  Google Scholar 

  26. Gadd, G., Fungi and industrial pollutants, in Environmental and Microbial Relationships, vol. 4 of The Mycota, Druzhinina, I.S. and Kubicek, C.P., Eds., Berlin, Heidelberg: Springer, 2016, 3rd ed., pp. 99–125. https://doi.org/10.1007/978-3-319-29532-9

  27. Glatz, A., Pilbat, A., Németh, G.L., Vince-Kontár, K., Jósvay, K., Hunya, Á., Udvardy, A., Gombos, I., Péter, M., Balogh, G., Horváth, I., Vígh, L., and Török, Z., Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe, Cell Stress Chaperones, 2016, vol. 21, pp. 327–338. https://doi.org/10.1007/s12192-015-0662-4

    Article  CAS  PubMed  Google Scholar 

  28. Golub, T., Wacha, S., and Caroni, P., Spatial and temporal control of signaling through lipid rafts, Curr. Opin. Neurobiol., 2004, vol. 14, pp. 542–550. https://doi.org/10.1016/j.conb.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  29. Goncalves, N.V., Aline, B.M., and Rosa, C.A., Diversity and distribution of fungal communities in lakes of Antarctica, FEMS Microbiol. Ecol., 2012, vol. 82, pp. 459–471. https://doi.org/10.3390/microorganisms7100445

    Article  CAS  PubMed  Google Scholar 

  30. Gorbunova, E.A. and Terekhova, V.A., Heavy metals as a stress factor for fungi: cellular and organism-level effects, Mikologiya i Fitopatologiya, 1995, vol. 29, pp. 63–69.

    CAS  Google Scholar 

  31. Gostinčar, C., Turk, M., Trbuha, T., Vaupotič, T., Plemenitaš, A., and Gunde-Cimerman, N., Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress, Stud. Mycol., 2008, vol. 61, pp. 51–59. https://doi.org/10.3114/sim.2008.61.04

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gostinčar, C., Turk, M., Plemenitaš, A., and Gunde-Cimerman, N., The expressions of Δ9-, Δ12-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent, FEMS Yeast Res., 2009, vol. 9, pp. 247–256. https://doi.org/10.1111/j.1567-1364.2009.00481.x

    Article  CAS  PubMed  Google Scholar 

  33. Gostinčar, C. and Gunde-Cimerman, N., Overview of oxidative stress response genes in selected halophilic fungi, Genes (Basel), 2018, vol. 9, art. 143. https://doi.org/10.3390/genes9030143

    Article  CAS  PubMed Central  Google Scholar 

  34. Grum-Grzhimaylo, A.A., Georgieva, M.L., Bondarenko, S.A., Debets, A.J.M., and Bilanenko, E.N., On the diversity of fungi from soda soils, Fungal Diversity, 2016, vol. 76, pp. 27–74. https://doi.org/10.1007/s13225-015-0320-2

    Article  Google Scholar 

  35. Gunde-Cimerman, N., Plemenitaš, A., and Oren, A., Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations, FEMS Microbiol. Rev., 2018, vol. 42, no. 3, pp. 353–375. https://doi.org/10.1093/femsre/fuy009

    Article  CAS  PubMed  Google Scholar 

  36. Haas, K., Role of sterol metabolism and endoplasmic reticulum-associated degradation of proteins in cold adaptation of yeasts, in Cold-Adapted Yeasts, Buzzini, P. and Margesin, R., Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 281–293.

    Google Scholar 

  37. Hąc-Wydro, K., Połeć, K., and Broniatowski, M., The comparative analysis of the effect of environmental toxicants: Bisphenol A, S and F on model plant, fungi and bacteria membranes. The studies on multicomponent systems, J. Mol. Liq., 2019, vol. 289, art. 111136. https://doi.org/10.1016/j.molliq.2019.111136

    Article  CAS  Google Scholar 

  38. Harayama, T. and Riezman, H., Understanding the diversity of membrane lipid composition, Nat. Rev. Mol. Cell Biol., 2018, vol. 19, pp. 281–296. https://doi.org/10.1038/nrm.2017.138

    Article  CAS  PubMed  Google Scholar 

  39. Hayashi, M. and Maeda, T., Activation of the HOG pathway upon cold stress in Saccharomyces cerevisiae, J. Biochem., 2006, vol. 139, pp. 797–803. https://doi.org/10.1093/jb/mvj089

    Article  CAS  PubMed  Google Scholar 

  40. He, B., Ma, L., Hu, Z., Li, H., Ai, M., Long, C., and Zeng, B., Deep sequencing analysis of transcriptomes in Aspergillus oryzae in response to salinity stress, Appl. Microbiol. Biotechnol., 2018, vol. 102, pp. 897–906. https://doi.org/10.1007/s00253-017-8603-z

    Article  CAS  PubMed  Google Scholar 

  41. Holthuis, J.C.M. and Menon, A.K., Lipid landscapes and pipelines in membrane homeostasis, Nature, 2014, vol. 510, pp. 48–57. https://doi.org/10.1038/nature13474

    Article  CAS  PubMed  Google Scholar 

  42. Hong, J., Gierasch, L.M., and Liu, Z., Its preferential interactions with biopolymers account for diverse observed effects of trehalose, Biophys. J., 2015, vol. 109, pp. 144–153. https://doi.org/10.1016/j.bpj.2015.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Horváth, I., Multhoff, G., Sonnleitner, A., and Vígh, L., Membrane-associated stress proteins: more than simply chaperones, Biochim. Biophys. Acta—Biomembr., 2008, vol. 1778, pp. 1653–1664. https://doi.org/10.1016/j.bbamem.2008.02.012

    Book  Google Scholar 

  44. Hosono, K., Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerant yeast Zygosaccharomyces rouxii, J. Gen. Microbiol., 1992, vol. 138, pp. 91–96. https://doi.org/10.1099/00221287-138-1-91

    Article  CAS  Google Scholar 

  45. Ianutsevich, E.A., Danilova, O.A., Groza, N.V., and Tereshina, V.M., Membrane lipids and cytosol carbohydrates in Aspergillus niger under osmotic, oxidative, and cold impact, Microbiology (Moscow), 2016a, vol. 85, pp. 302–310. https://doi.org/10.1134/S0026261716030152

    Article  CAS  Google Scholar 

  46. Ianutsevich, E.A., Danilova, O.A., Groza, N.V., Kotlova, E.R., and Tereshina, V.M., Heat shock response of thermophilic fungi: membrane lipids and soluble carbohydrates under elevated temperatures, Microbiology (Reading), 2016b, vol. 162, pp. 989–999. https://doi.org/10.1099/mic.0.000279

  47. Ianutsevich, E.A., Danilova, O.A., Kurilov, D.V., Zavarzin, I.V., and Tereshina, V.M., Osmolytes and membrane lipids in adaptive response of thermophilic fungus Rhizomucor miehei to cold, osmotic and oxidative shocks, Extremophiles, 2020, vol. 24, no. 3, pp. 391–401. https://doi.org/10.1007/s00792-020-01163-3

    Article  CAS  PubMed  Google Scholar 

  48. Inouye, M. and Phadtare, S., Cold-shock response and adaptation to near-freezing temperature in cold-adapted yeasts, in Cold-Adapted Yeasts, Buzzini, P. and Margesin, R., Eds., Berlin, Heidelberg: Springer, 2014, pp. 243–257.

    Google Scholar 

  49. Jacob, S. and Thines, E., Multistep phosphorelay in fungi: the enigma of multiple signals and a limited number of signaling pathways, Mycol. Prog., 2017, vol. 16, pp. 1007–1013. https://doi.org/10.1007/s11557-017-1342-9

    Article  Google Scholar 

  50. Jang, J.H., Lee, C.S., Hwang, D., and Ryu, S.H., Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners, Prog. Lipid Res., 2012, vol. 51, pp. 71–81. https://doi.org/10.1016/j.plipres.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  51. Khaware, R.K., Koul, A., and Prasad, R., High membrane fluidity is related to NaCl stress in Candida membranefaciens, Biochem. Mol. Biol. Int., 1995, vol. 35, pp. 875–880.

    CAS  PubMed  Google Scholar 

  52. Kim, H.J., Lee, J.H., Do, H., and Jung, W., Production of antifreeze proteins by cold-adapted yeasts, in Cold-Adapted Yeasts, Buzzini, P. and Margesin, R., Eds., Berlin, Heidelberg: Springer, 2014, pp. 259–280.

    Google Scholar 

  53. Kim, I.-S., Moon, H.-Y., Yun, H.-S., and Jin, I., Heat shock causes oxidative stress and induces a variety of cell rescue proteins in Saccharomyces cerevisiae KNU5377, J. Microbiol., 2006, vol. 44, pp. 492–501

    CAS  PubMed  Google Scholar 

  54. Kimata, Y., Nguyen, T.M.P., and Kohno, K., Response and cytoprotective mechanisms against proteotoxic stress in yeast and fungi, in Stress Response Mechanisms in Fungi, Skoneczny, M., Ed., Cham: Springer International Publishing, 2018, pp. 161–188.

    Google Scholar 

  55. Klose, C., Surma, M.A., Gerl, M.J., Meyenhofer, F., Shevchenko, A., and Simons, K., Flexibility of a eukaryotic lipidome–-insights from yeast lipidomics, PLoS One, 2012, vol. 7, art. e35063. https://doi.org/10.1371/journal.pone.0035063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kodedová, M. and Sychrová H., Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae, PLoS One, 2015, vol. 10, art. e0139306. https://doi.org/10.1371/journal.pone.0139306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kooijman, E.E. and Burger, K.N.J., Biophysics and function of phosphatidic acid: A molecular perspective, Biochim. Biophys. Acta—Mol. Cell Biol. Lipids, 2009, vol. 1791, pp. 881–888. https://doi.org/10.1016/j.bbalip.2009.04.001

    Article  CAS  Google Scholar 

  58. Laroche, C., Beney, L., Marechal, P.A., and Gervais, P., The effect of osmotic pressure on the membrane fluidity of Saccharomyces cerevisiae at different physiological temperatures, Appl. Microbiol. Biotechnol., 2001, vol. 56, pp. 249–254. https://doi.org/10.1007/s002530000583

    Article  CAS  PubMed  Google Scholar 

  59. Leach, M.D., Farrer, R.A., Tan, K., Miao, Z., Walker, L.A., Cuomo, C.A., Wheeler, R.T., Brown, A.J.P., Wong, K.H., and Cowen, L.E., Hsf1 and Hsp90 orchestrate temperature-dependent global transcriptional remodelling and chromatin architecture in Candida albicans, Nat. Commun., 2016, vol. 7, art. 11704. https://doi.org/10.1038/ncomms11704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, Z., Agellon, L.B., Allen, T.M., Umeda, M., Jewell, L., Mason, A., and Vance, D.E., The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis, Cell Metab., 2006, vol. 3, pp. 321–331. https://doi.org/10.1016/j.cmet.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  61. Li, S., Yu, H., Liu, Y., Zhang, X., and Ma, F., The lipid strategies in Cunninghamella echinulata for an allostatic response to temperature changes, Process Biochem., 2019, vol. 76, pp. 85–94. https://doi.org/10.1016/j.procbio.2018.11.005

    Article  CAS  Google Scholar 

  62. Lingwood, D. and Simons, K., Lipid rafts as a membrane-organizing principle, Science, 2010, vol. 327, pp. 46–50. https://doi.org/10.1126/science.1174621

    Article  CAS  PubMed  Google Scholar 

  63. Liu, K.-H., Ding, X.-W., Narsing Rao, M.P., Zhang, B., Zhang, Y.-G., Liu, F.-H., Liu, B.-B., Xiao, M., and Li, W. J., Morphological and transcriptomic analysis reveals the osmoadaptive response of endophytic fungus Aspergillus montevidensis ZYD4 to high salt stress, Front. Microbiol., 2017a, vol. 8, art. 1789. https://doi.org/10.3389/fmicb.2017.01789

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu, Y.-N., Lu, X.-X., Chen, D., Lu, Y.-P., Ren, A., Shi, L., Zhu, J., Jiang, A.-L., Yu, H.-S., and Zhao, M.-W., Phospholipase D and phosphatidic acid mediate heat stress induced secondary metabolism in Ganoderma lucidum, Environ. Microbiol., 2017b, vol. 19, pp. 4657–4669. https://doi.org/10.1111/1462-2920.13928

    Article  CAS  PubMed  Google Scholar 

  65. Loertscher, J., Larson, L.L., Matson, C.K., Parrish, M.L., Felthauser, A., Sturm, A., Tachibana, C., Bard, M., and Wright, R., Endoplasmic reticulum-associated degradation is required for cold adaptation and regulation of sterol biosynthesis in the yeast Saccharomyces cerevisiae, Eukaryot. Cell, 2006, vol. 5, pp. 712–722. https://doi.org/10.1128/EC.5.4.712-722.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Manfiolli, A.O., Mattos, E.C., De Assis, L.J., Silva, L.P., Ulas, M., Brown, N.A., Silva-Rocha, R., Bayram, Ö., and Goldman, G.H., Aspergillus fumigatus high osmolarity glycerol mitogen activated protein kinases SakA and MpkC physically interact during osmotic and cell wall stresses, Front. Microbiol., 2019, vol. 10, art. 918. https://doi.org/10.3389/fmicb.2019.00918

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mantil, E., Crippin, T., and Avis, T.J., Supported lipid bilayers using extracted microbial lipids: domain redistribution in the presence of fengycin, Colloids Surfaces B Biointerfaces, 2019, vol. 178, pp. 94–102. https://doi.org/10.1016/j.colsurfb.2019.02.050

    Article  CAS  PubMed  Google Scholar 

  68. Marfenina O.E., Antropogennaya ekologiya pochvennyh gribov (Anthropogenic Ecology of Soil Fungi), Moscow: Meditsina dlia vseh, 2005.

  69. Margesin, R. and Miteva, V., Diversity and ecology of psychrophilic microorganisms, Res. Microbiol., 2011, vol. 162, pp. 346–361. https://doi.org/10.1016/j.resmic.2010.12.004

    Article  PubMed  Google Scholar 

  70. McMahon, H.T. and Gallop, J.L., Membrane curvature and mechanisms of dynamic cell membrane remodelling, Nature, 2005, vol. 438, pp. 590–596. https://doi.org/10.1038/nature04396

    Article  CAS  PubMed  Google Scholar 

  71. Meier, K.D., Deloche, O., Kajiwara, K., Funato, K., and Riezman, H., Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae, Mol. Biol. Cell, 2006, vol. 17, pp. 1164–1175. https://doi.org/10.1091/mbc.E05-11-1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mironenka, J., Różalska, S., Soboń, A., and Bernat, P., Lipids, proteins and extracellular metabolites of Trichoderma harzianum modifications caused by 2,4-dichlorophenoxyacetic acid as a plant growth stimulator, Ecotoxicol. Environ. Saf., 2020, vol. 194, art. 110383. https://doi.org/10.1016/j.ecoenv.2020.110383

    Article  CAS  PubMed  Google Scholar 

  73. Moliné, M., Libkind, D., de Garcia, V., Giraudo, M.R., Production of pigments and photo-protective compounds by cold-adapted yeasts, in Cold-Adapted Yeasts, Buzzini, P. and Margesin, R., Eds., Berlin, Heidelberg: Springer, 2014, pp. 193–224.

    Google Scholar 

  74. Morano, K.A., Grant, C.M., and Moye-Rowley, W.S., The response to heat shock and oxidative stress in Saccharomyces cerevisiae, Genetics, 2012, vol. 190, pp. 1157–1195. https://doi.org/10.1534/genetics.111.128033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Munnik, T., Phosphatidic acid: an emerging plant lipid second messenger, Trends Plant Sci., 2001, vol. 6, pp. 227–233. https://doi.org/10.1016/S1360-1385(01)01918-5

    Article  CAS  PubMed  Google Scholar 

  76. Nakagawa, Y., Sakumoto, N., Kaneko, Y., and Harashima, S., Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun., 2002, vol. 291, pp. 707–713. https://doi.org/10.1006/bbrc.2002.6507

    Article  CAS  PubMed  Google Scholar 

  77. Nicolson, G.L., The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years, Biochim. Biophys. Acta, 2014, vol. 1838, pp. 1451–1466. https://doi.org/10.1016/j.bbamem.2013.10.019

    Article  CAS  PubMed  Google Scholar 

  78. Nykiel-Szymańska, J., Różalska, S., Bernat, P., and Słaba, M., Assessment of oxidative stress and phospholipids alterations in chloroacetanilides-degrading Trichoderma spp., Ecotoxicol. Environ. Saf., 2019, vol. 184, art. 109629. https://doi.org/10.1016/j.ecoenv.2019.109629

    Article  CAS  PubMed  Google Scholar 

  79. Pan, J., Hu, C., and Yu, J.H., Lipid biosynthesis as an antifungal target, J. Fungi, 2018, vol. 4, pp. 1–13. https://doi.org/10.3390/jof4020050

    Article  CAS  Google Scholar 

  80. Paraszkiewicz, K., Bernat, P., and Długoński, J., Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata, Int. Biodeterior. Biodegradation, 2009, vol. 63, pp. 100–105. https://doi.org/10.1016/j.ibiod.2008.03.015

    Article  CAS  Google Scholar 

  81. Paraszkiewicz, K., Bernat, P., Naliwajski, M., and Długoński, J., Lipid peroxidation in the fungus Curvularia lunata exposed to nickel, Arch. Microbiol., 2010, vol. 192, pp. 135–141. https://doi.org/10.1007/s00203-009-0542-3

    Article  CAS  PubMed  Google Scholar 

  82. Péter, M., Glatz, A., Gudmann, P., Gombos, I., Török, Z., Horváth, I., Vígh, L., and Balogh, G., Metabolic crosstalk between membrane and storage lipids facilitates heat stress management in Schizosaccharomyces pombe, PLoS One, 2017, vol. 12, art. e0173739. https://doi.org/10.1371/journal.pone.0173739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Piper, P.W., Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev., 1993, vol. 11, pp. 339–355. https://doi.org/10.1111/j.1574-6976.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  84. Rangel, D.E.N., Stress-induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes, World J. Microbiol. Biotechnol., 2011, vol. 27, pp. 1281–1296. https://doi.org/10.1007/s11274-010-0584-3

    Article  PubMed  Google Scholar 

  85. Redón, M., Guillamón, J.M., Mas, A., and Rozès, N., Effect of lipid supplementation upon Saccharomyces cerevisiae lipid composition and fermentation performance at low temperature, Eur. Food Res. Technol., 2009, vol. 228, pp. 833–840. https://doi.org/10.1007/s00217-008-0996-6

    Article  CAS  Google Scholar 

  86. Redón, M., Borrull, A., López, M., Salvadó, Z., Cordero, R., Mas, A., Guillamón, J.M., and Rozès, N., Effect of low temperature upon vitality of Saccharomyces cerevisiae phospholipid mutants, Yeast, 2012, vol. 29, pp. 443–452. rg/https://doi.org/10.1002/yea.2924

    Article  CAS  PubMed  Google Scholar 

  87. Renne, M.F. and de Kroon, A.I.P.M., The role of phospholipid molecular species in determining the physical properties of yeast membranes, FEBS Lett., 2018, vol. 592, pp. 1330–1345. https://doi.org/10.1002/1873-3468.12944

    Article  CAS  PubMed  Google Scholar 

  88. Rep, M., Krantz, M., Thevelein, J.M., and Hohmann, S., The transcriptional response of Saccharomyces cerevisiae to osmotic shock, J. Biol. Chem., 2000, vol. 275, pp. 8290–8300. https://doi.org/10.1074/jbc.275.12.8290

    Article  CAS  PubMed  Google Scholar 

  89. Řezanka, T., Kolouchová, I., Gharwalová, L., Doležalová, J., Nedbalová, L., and Sigler, K., Sphingolipidomics of thermotolerant yeasts, Lipids, 2018, vol. 53, pp. 627–639. https://doi.org/10.1002/lipd.12076

    Article  CAS  PubMed  Google Scholar 

  90. Rodríguez-Vargas, S., Sánchez-García, A., Martínez-Rivas, J.M., Prieto, J.A., and Randez-Gil, F., Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress, Appl. Environ. Microbi-ol., 2007, vol. 73, pp. 110–116. https://doi.org/10.1128/AEM.01360-06

    Article  CAS  Google Scholar 

  91. Román, E., Correia, I., Prieto, D., Alonso, R., and Pla, J., The HOG MAPK pathway in Candida albicans: more than an osmosensing pathway, Int. Microbiol., 2020, vol. 23, pp. 23–29. https://doi.org/10.1007/s10123-019-00069-1

    Article  CAS  PubMed  Google Scholar 

  92. Rossi, M., Buzzini, P., Cordisco, L., Amaretti, A., Sala, M., Raimondi, S., Ponzoni, C., Pagnoni, U.M., and Matteuzzi, D., Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts, FEMS Microbiol. Ecol., 2009, vol. 69, pp. 363–372. https://doi.org/10.1111/j.1574-6941.2009.00727.x

    Article  CAS  PubMed  Google Scholar 

  93. Rozentsvet, O.A., Fedoseeva, E.V., and Terekhova, V.A., Lipid biomarkers in ecological evaluation of soil biota: analysis of fatty acids (review), Usp. Sovr. Biol., 2019, vol. 139, pp. 161–177. https://doi.org/10.1134/S0042132419020078

    Article  Google Scholar 

  94. Ruenwai, R., Neiss, A., Laoteng, K., Vongsangnak, W., Dalfard, A.B., Cheevadhanarak, S., Petranovic, D., and Nielsen, J., Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress, Biotechnol. J., 2011, vol. 6, pp. 343–356. https://doi.org/10.1002/biot.201000316

    Article  CAS  PubMed  Google Scholar 

  95. Sahara, T., Goda, T., and Ohgiya, S., Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature, J. Biol. Chem., 2002, vol. 277, pp. 50015–50021. https://doi.org/10.1074/jbc.M209258200

    Article  CAS  PubMed  Google Scholar 

  96. Salar, R.K., Thermophilic Fungi: Basic Concepts and Biotechnological Applications, Boca Raton: CRC Press, 2018.

    Book  Google Scholar 

  97. Satyanarayana, T. and Johri, B.N., Physiology and biochemistry of thermophilic moulds, in Thermophilic Moulds in Biotechnology, Johri, B.N., Satyanarayana, T., and Olsen, J., Eds., Dordrecht: Springer Netherlands, 1999, pp. 85–113.

    Google Scholar 

  98. Sazanova, K.V., Senik, S.V., Kirtsideli, I.Yu., and Shavarda, A.L., Metabolomic profiling and lipid composition of Arctic and Antarctic strains of micromycetes Geomyces pannorum and Thelebolus microsporus grown at different temperatures, Microbiology (Moscow), 2019, vol. 88, pp. 282–291. https://doi.org/10.1134/S002626171903011

    Article  CAS  Google Scholar 

  99. Sekova, V.Y., Dergacheva, D.I., Isakova, E.P., Gessler, N.N., Tereshina, V.M., and Deryabina, Y.I., Soluble sugar and lipid readjustments in the Yarrowia lipolytica yeast at various temperatures and pH, Metabolites, 2019, vol. 9, art. 307. https://doi.org/10.3390/metabo9120307

    Article  CAS  PubMed Central  Google Scholar 

  100. Shin, J.J. and Loewen, C.J., Putting the pH into phosphatidic acid signaling, BMC Biol., 2011, vol. 9, p. 85. https://doi.org/10.1186/1741-7007-9-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Siewiera, P., Bernat, P., Różalska, S., and Długoński, J., Estradiol improves tributyltin degradation by the filamentous fungus Metarhizium robertsii, Int. Biodeterior. Biodegradation, 2015, vol. 104, pp. 258–263. https://doi.org/10.1016/j.ibiod.2015.06.014

    Article  CAS  Google Scholar 

  102. Simons, K. and Sampaio, J., Membrane organization and lipid rafts, Cold Spring Harb. Perspect. Biol., 2011, vol. 3, art. a004697. https://doi.org/10.1101/cshperspect.a004697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sinensky, M., Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA, 1974, vol. 71, pp. 522–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Singer, M.A. and Lindquist, S., Multiple effects of trehalose on protein folding in vitro and in vivo, Mol. Cell, 1998, vol. 1, pp. 639–648. https://doi.org/10.1016/S1097-2765(00)80064-7

    Article  CAS  PubMed  Google Scholar 

  105. Słaba, M., Szewczyk, R., Piątek, M.A., and Długoński, J., Alachlor oxidation by the filamentous fungus Paecilomyces marquandii, J. Hazard Mater., 2013, vol. 261, pp. 443–450. https://doi.org/10.1016/j.jhazmat.2013.06.064

    Article  CAS  PubMed  Google Scholar 

  106. Smolyanyuk, E.V., Bilanenko, E.N., Tereshina, V.M., Kachalkin, A.V., and Kamzolkina, O.V., Effect of sodium chloride concentration in the medium on the composition of the membrane lipids and carbohydrates in the cytosol of the fungus Fusarium sp., Microbiology (Moscow), 2013, vol. 82, pp. 600–608. https://doi.org/10.1134/S0026261713050111

    Article  CAS  Google Scholar 

  107. Sum, A.K., Faller, R., and de Pablo, J.J., Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides, Biophys. J., 2003, vol. 85, pp. 2830–2844. https://doi.org/10.1016/S0006-3495(03)74706-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tanigawa, M., Kihara, A., Terashima, M., Takahara, T., and Maeda, T., Sphingolipids regulate the yeast high-osmolarity glycerol response, Mol. Cell. Biol., 2012, vol. 32, pp. 2861–2870. https://doi.org/10.1128/MCB.06111-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tatebayashi, K., Yamamoto, K., Tomida, T., Nishimu-ra, A., Takayama, T., Oyama, M., Kozuka-Hata, H., Adachi-Akahane, S., Tokunaga, Y., and Saito, H., Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K, EMBO J., 2020, vol. 39, art. e103444. https://doi.org/10.15252/embj.2019103444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Terekhova, V.A., Mikromycety v ekologicheskoi otsenke vodnykh i nazemnykh ekosistem (Micromycetes in Ecological Evaluation of Aquatic and Terrestrial Ecosystems), Moscow: Nauka, 2007.

  111. Terekhova, V.A., Shitikov, V.K., Ivanova, A.E., and Kydralieva, K.A., Assessment of the ecological risk of technogenic soil pollution on the basis of the statistical distribution of the occurrence of micromycete species, Russ. J. Ecol., 2017, vol. 48, pp. 417–424. https://doi.org/10.1134/S1067413617050125

    Article  Google Scholar 

  112. Terekhova, V.A. and Shved, L.G., Changes of morphological traits of aquatic fungi exposed to heavy metals, Russ. J. Ecol., 1994, no. 6, pp. 77–79.

  113. Tereshina, V.M., Memorskaya, A.S., Kotlova, E.R., and Feofilova, E.P., Composition of membrane lipids and cytosol carbohydrates in Aspergillus niger during heat shock, Microbiology (Moscow), 2010, vol. 79, pp. 45–51.

    CAS  PubMed  Google Scholar 

  114. Tereshina, V.M., Memorskaya, A.S., and Kotlova, E.R., The effect of different heat influences on composition of membrane lipids and cytosol carbohydrates in mycelial fungi, Microbiology (Moscow), 2011, vol. 80, pp. 455–460. https://doi.org/10.1134/S0026261711040199

    Article  CAS  Google Scholar 

  115. Thibault, G., Shui, G., Kim, W., McAlister, G.C., Ismail, N., Gygi, S.P., Wenk, M.R., and Ng, D.T.W., The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network, Mol. Cell, 2012, vol. 48, pp. 16–27. https://doi.org/10.1016/j.molcel.2012.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tiwari, S., Thakur, R., and Shankar, J., Role of heat-shock proteins in cellular function and in the biology of fungi, Biotechnol. Res. Int., 2015, vol. 2015, art. 132635. https://doi.org/10.1155/2015/132635

  117. Turk, M., Méjanelle, L., Šentjurc, M., Grimalt, J.O., Gunde-Cimerman, N., and Plemenitaš, A., Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi, Extremophiles, 2004, vol. 8, pp. 53–61. https://doi.org/10.1007/s00792-003-0360-5

    Article  CAS  PubMed  Google Scholar 

  118. Turk, M., Montiel, V., Žigon, D., Plemenitaš, A., and Ramos, J., Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity, M-icrobiology (Reading), 2007a, vol. 153, no. 10, pp. 3586–3592. https://doi.org/10.1099/mic.0.2007/009563-0

    Article  CAS  Google Scholar 

  119. Turk, M., Abramović, Z., Plemenitaš, A., and Gunde-Cimerman, N., Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi, FEMS Yeast Res., 2007b, vol. 7, pp. 550–557. https://doi.org/10.1111/j.1567-1364.2007.00209.x

    Article  CAS  PubMed  Google Scholar 

  120. Turk, M., Plemenitaš, A., and Gunde-Cimerman, N., Extremophilic yeasts: plasma-membrane fluidity as determinant of stress tolerance, Fungal Biol., 2011, vol. 115, pp. 950–958. https://doi.org/10.1016/j.funbio.2011.04.006

    Article  CAS  PubMed  Google Scholar 

  121. van den Brink-van der Laan E., Killian, J.A., and de Kruijff B., Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile, Biochim. Biophys. Acta—Biomembr., 2004, vol. 1666, pp. 275–288. https://doi.org/10.1016/j.bbamem.2004.06.010

    Book  Google Scholar 

  122. Vaskovsky, V.E., Khotimchenko, S.V., and Benson, A.A., Identification of diacylglycero-4'-o-(N,N,N-trimethyl)homosrine in mushrooms, Lipids, 1991, vol. 26, pp. 254−256.

    Article  Google Scholar 

  123. Verghese, J., Abrams, J., Wang, Y., and Morano, K.A., Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system, Microbiol. Mol. Biol. Rev., 2012, vol. 76, pp. 115–158. https://doi.org/10.1128/MMBR.05018-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vesentini, D., Dickinson, D.J., and Murphy, R.J., The protective role of the extracellular mucilaginous material (EC-MM) from two wood-rotting basidiomycetes against copper toxicity, Int. Biodeterior. Biodegradation, 2007, vol. 60, pp. 1–7. https://doi.org/10.1016/j.ibiod.2006.11.006

    Article  CAS  Google Scholar 

  125. Wang, D., Zhang, M., Huang, J., Zhou, R., Jin, Y., and Wu, C., Zygosaccharomyces rouxii combats salt stress by maintaining cell membrane structure and functionality, J. Microbiol. Biotechnol., 2020, vol. 30, pp. 62–70.

    Article  CAS  PubMed  Google Scholar 

  126. Watson, K., Arthur, H., and Shipton, W.A., Leucosporidium yeasts: obligate psychrophiles which alter membrane-lipid and cytochrome composition with temperature, J. Gen. Microbiol., 1976, vol. 97, pp. 11–18. https://doi.org/10.1099/00221287-97-1-11

    Article  CAS  PubMed  Google Scholar 

  127. Weete, J.D., Introduction to fungal lipids, in Fungal Lipid Biochemistry, Kritchevsky, D., Ed., New York: Springer US, 1974, chapter 1, pp. 3–36.

    Book  Google Scholar 

  128. Weete, J.D., Lipid Biochemistry of Fungi and Other Organisms, Boston: Springer US, 1980.

    Book  Google Scholar 

  129. Weete, J.D. and Gandhi, S.R., Biochemistry and molecular biology of fungal sterols, in Biochemistry and Molecular Biology, vol. 3 of The Mycota, Berlin, Heidelberg, N.Y.: Springer-Verlag, 1996, pp. 421–438.

  130. Welker, S., Rudolph, B., Frenzel, E., Hagn, F., Liebisch, G., Schmitz, G., Scheuring, J., Kerth, A., Blume, A., Weinkauf, S., Haslbeck, M., Kessler, H., and Buchner, J., Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function, Mol. Cell, 2010, vol. 39, pp. 507–520. https://doi.org/10.1016/j.molcel.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  131. Winkler, A., Arkind, C., Mattison, C.P., Burkholder, A., Knoche, K., and Ota, I., Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress, Eukaryot. Cell, 2002, vol. 1, pp. 163–173. https://doi.org/10.1128/EC.1.2.163-173.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu, C., Zhang, J., Zhu, G., Yao, R., Chen, X., and Liu, L., CgHog1-mediated CgRds2 phosphorylation alters glycerophospholipid composition to coordinate osmotic stress in Candida glabrata, Appl. Environ. Microbiol., 2019, vol. 85, art. e02822-18. https://doi.org/10.1128/AEM.02822-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xia, J., Jones, A.D., Lau, M.W., Yuan, Y.-J., Dale, B.E., and Balan, V., Comparative lipidomic profiling of xylose-metabolizing S. cerevisiae and its parental strain in different media reveals correlations between membrane lipids and fermentation capacity, Biotechnol. Bioeng., 2011, vol. 108, pp. 12–21. https://doi.org/10.1002/bit.22910

    Article  CAS  PubMed  Google Scholar 

  134. Yamashita, A., Hayashi, Y., Nemoto-Sasaki, Y., Ito, M., Oka, S., Tanikawa, T., Waku, K., and Sugiura, T., Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms, Prog. Lipid Res., 2014, vol. 53, pp. 18–81. https://doi.org/10.1016/j.plipres.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  135. Yanutsevich, E.A., Memorskaya, A.S., Groza, N.V., Kochkina, G.A., and Tereshina, V.M., Heat shock response in the thermophilic fungus Rhizomucor miehei, Microbiology (Moscow), 2014, vol. 83, pp. 498–504. https://doi.org/10.1134/S0026261714050282

    Article  CAS  Google Scholar 

  136. Zhang, Y. and Xu, J., Molecular mechanisms of fungal adaptive evolution, in Molecular Mechanisms of Microbial Evolution, Rampelotto P., Ed., Grand Challenges in Biology and Biotechnology, Cham: Springer, 2018, pp. 409–435.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research project no. 19-14-50516 (Expansion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Fedoseeva.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseeva, E.V., Danilova, O.A., Ianutsevich, E.A. et al. Micromycete Lipids and Stress. Microbiology 90, 37–55 (2021). https://doi.org/10.1134/S0026261721010045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721010045

Keywords:

Navigation