Skip to main content
Log in

Structure and Biological Properties of the O-specific Polysaccharide and Lipid a from Pantoea agglomerans P324

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Lipopolysaccharide (LPS) of a new Pantoea agglomerans strain P324 was studied by chemical and biological methods. Mild acid hydrolysis of the LPS resulted in lipid A and O-specific polysaccharide (OPS) fractions. Studies by negative-ion mode HR ESI mass spectrometry showed heterogeneity of the lipid A, the major form being a hexa-acylated derivative containing biphosphorylated GlcN disaccharide, four 14:0 (3-OH), one 18:0, and one 12:0 residues. The following structure of the OPS was elucidated by chemical, NMR and computational methods: →3)-α-L-Rhap-(1→4)-α-D-Glcp-(1→. The P. agglomerans P324 LPS showed medium level of toxic and pyrogenic activities. Structural components of the LPS exhibited varying effects on the activity of Bacillus peptidases. Thus, the OPS and lipid A played a significant role in the hydrolysis of fibrin by Bacillus proteases but did not affect the activity of protease 2 of B. thuringiensis IMV B-7465 and protease 1 of B. thuringiensis IMV B-7324. Hydrolysis of elastin was intensified by core oligosaccharide and lipid A. Hydrolysis of collagen in the presence of the isolated fractions was accompanied by the inhibition of activity as compared to the native LPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Albershein, P., Nevis, D.J., English, P.D., and Karr, A., A method for analysis of sugars in plant cell–wall polysaccharides by gas–liquid chromatography, Carbohydrate Res., 1976, no. 3, pp. 340–345.

  2. Belyakov, P.A., Kadentsev, V.I., Chizhov, A.O., Kolotyrkina, N.G., Shashkov, A.S., and Ananikov, V.P., Mechanistic insight into organic and catalytic reactions by joint studies using mass spectrometry and NMR spectroscopy, Mendeleev Commun., 2010, no. 20, pp. 125–131.

  3. Bennett, I.L., A study of the relationship between the fevers caused by bacterial pyrogens and by the intravenous injection of the sterile exudates of acute inflammation, J. Exptl. Med., 1948, vol. 88, no. 3, pp. 279–284.

    Article  Google Scholar 

  4. Brilis, V., Briline, T., Lencner, H., and Lencner, A., A method for investigation of the adhesive process in microorganisms, Lab. Delo, 1968, no. 4, pp. 210–212.

  5. Dzyublyuk, N.A., Varbanets, L.D., and Bulyhina, T.V., Influence of Pantoea agglomerans lipopolisaccharides on the activity of Bacillus proteases, Mikrobiol. Z., 2018, vol. 80, рр. 27–35.

  6. Dentovskaya, S.V., Platonov, M.E., Bakhteyeva, I.V., and Anisimov, A.P., Presence of the full lipopolysaccharide core structure is necessary for activation of plasminogen by Yersinia pestis, Probl. Esp. Dang. Infect., 2007, vol. 93, pp. 49–51. Dzyublyuk, N.A., Varbanets, L.D., and Bulyhina, T.V., Influence of Pantoea agglomerans lipopolisaccharides on the activity of Bacillus proteases, Mikrobiol. Z., 2018, vol. 80, рр. 27–35

    Google Scholar 

  7. Elif, E. and Bert, B., Structural basis for activation of lipopolysaccharide, J. Biol. Chem., 2012, vol. 287, no. 28, pp. 23971–23976.

    Article  Google Scholar 

  8. Jackson, A.D. and Smith, V.J., LPS-sensitive protease activity in the cells of the solitary ascidian, Ciona intestinalis (L.), Comp. Biochem. Physiol., Part B, 1993, vol. 106, no. 3, pp. 505–512.

    Google Scholar 

  9. Kapaev, R.R. and Toukach, P.V., GRASS: semi-automated nmr-based structure elucidation of saccharides, Bioinformatics, 2018, vol. 34, no. 6, pp. 957–963.

    Article  CAS  Google Scholar 

  10. Kapaev, R.R., Egorova, K.S., and Toukach, P.V., Carbohydrate structure generalization scheme for database-driven simulation of experimental observables, such as NMR chemical shifts, J. Chem. Inf. Model., 2014, vol. 54, no. 9, pp. 2594–2611.

    Article  CAS  Google Scholar 

  11. Knirel, Y.A., Structure of O-antigens, in Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells, Knirel, Y.A. and Valvano, M.A., Eds., Wien: Springer, 2011, pp. 41–115.

    Book  Google Scholar 

  12. Kohchi, C., Inagawa, H., Nishizawa, T., Yamaguchi, T., Nagai, S., and Soma, G., Applications of lipopolysaccharide derived from Pantoea agglomerans (IP-PA1) for health care based on macrophage network theory, J. Biosci. Bioeng., 2006, vol. 102, no. 6, pp. 485–496.

    Article  CAS  Google Scholar 

  13. Kramer, R.A., Brandenburg, K., Vandeputte-Rutten, L., Werkhoven, M., Gros, P., Dekker, N., and Egmond, M.R., Lipopolysaccharide regions involved in the activation of Escherichia coli outer membrane protease OmpT, Eur. J. Biochem., 2002, vol. 269, no. 6, pp. 1746–1752.

    Article  CAS  Google Scholar 

  14. Leontein, K. and Lonngren, J., Determination of the absolute configuration of sugars by gas-liquid chromatography of their acetylated 2-octyl glycosides, Methods in Carbohydr. Chem., 1993, no. 9, pp. 87–89.

  15. Lipkind, G.M., Shashkov, A.S., Knirel, Y.A., Vinogra-dov, E.V., and Kochetkov, N.K., A computer-assisted structural analysis of regular polysaccharides on the basis of 13C-n.m.r. data, Carbohydr. Res., 1988, vol. 175, pp. 59–75.

    Article  CAS  Google Scholar 

  16. Mandl, I., Collagenase, Science, 1970, vol. 169, no. 3951, pp. 1234–1238.

    Article  Google Scholar 

  17. Masada, M., Determination of the thrombolytic activity of Natto extract, Food Style, 2004, vol. 8, no. 1, pp. 92–95.

    CAS  Google Scholar 

  18. Matseliukh, O.V. and Nidialkova, N.A., Bacillus thuringiensis elastases with insecticide activity, Ukr. Biokhim. Zh., 1999, vol. 84, no. 6, pp. 25–36.

    Google Scholar 

  19. Muthannan, A.R., Determination of 50% endpoint titer using a simple formula, World J. Virol., 2016, vol. 5, no. 2, pp. 85–86.

    Article  Google Scholar 

  20. Novak, V.L. and Oborin, O.M., Endogenous intoxication syndrome, sepsis and multiple organ failure: pathophysiological and clinical aspects of the problem (literature review), Zh. AMN Ukraine, 2009, vol. 15, no. 2, pp. 263−275.

    Google Scholar 

  21. Ouchterlony, O., Diffusion in gel methods for immunological analysis, Prog. Allergy, 1962, no. 6, pp. 30–154.

  22. Rylander, R. and Burrell, R., Endotoxins in inhalation research. Summary of conclusions of a workshop held at Clearwater, Florida, U.S.A., 28−30 September 1987, Ann. Occup. Hyg., 1987, vol. 32, no. 4, pp. 553–556.

    Google Scholar 

  23. Salimuddin, Nagasaki, A., Gotoh, T., Isobe, H., and Mori, M., Regulation of the genes for arginase isoforms and related enzymes in mouse macrophages by lipopolysaccharide, Amer. J. Physiol., 1999, vol. 277, no. 1, e110–e117.

    CAS  PubMed  Google Scholar 

  24. Schumann, R.R., Belka, C., Reuter, D., Lamping, N., Kirschning, C.J., Weber, J.R., and Pfeil, D., Lipopolysaccharide activates caspase-1 (interleukin-1-converting enzyme) in cultured monocytic and endothelial cells, Blood, 1998, vol. 91, no. 2, pp. 577–584.

    Article  CAS  Google Scholar 

  25. Sugiyama, N., Minami, N., Ishii, Y., and Amano, F., Inhibition of Lon protease by bacterial lipopolysaccharide (LPS) though inhibition of ATPase, Adv. Biosci. Biotechnol., 2013, no. 4, pp. 590–598.

  26. Tagawa, K., Yoshihara, T., Shibata, T., Kitazaki, K., Endo, Y., Fujita, T., Koshiba, T., and Kawabata, S., Microbe-specific C3b deposition in the horseshoe crab complement system in a C2/factor B-dependent or -independent manner, PLoS One, 2012, vol. 7, no. 5, e36783.

    Article  CAS  Google Scholar 

  27. Toukach, P.V. and Egorova, K.S., Carbohydrate Structure Database merged from bacterial, archaeal, plant and fungal parts, Nucleic Acids Res., 2016, vol. 44, no. D1, pp. D1229–D1236.

    Article  CAS  Google Scholar 

  28. Trent, M.S., Ribeiro, A.A., Lin, S., Cotter, R.J., and Raetz, C.R., An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor, J. Biol. Chem., 2001, vol. 276, no. 46, pp. 43122–43131.

    Article  CAS  Google Scholar 

  29. Völksch, B., Thon, S., Jacobsen, I.D., and Gube, M., Polyphasic study of plant- and clinic associated Pantoea agglomerans strains reveals indistinguishable virulence potential, Infect. Genet. Evol., 2009, vol. 9, no. 6, pp. 1381–1391.

    Article  Google Scholar 

  30. Vorob’eva, E.V., Krasikova, I.N., and Solov’eva, T.F., Influence of lipopolysaccharides and lipids A from some marine bacteria on spontaneous and Escherichia coli LPS-induced TNF-α release from peripheral human blood cells, Biochemistry, 2006, vol. 71, no. 7, pp. 936−944.

    Google Scholar 

  31. Wainstein, M.P., M100. Performance Standards for Antimicrobial Susceptibility Testing, 29th ed., Wayne: Clin. Lab. Stand. Inst., 2019.

    Google Scholar 

  32. Walterson, A.M., and Stavrinides, J., Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae, FEMS Microbiol. Rev., 2015, no. 39, pp. 968–984.

  33. Westphal, O., and Jann, K., Bacterial lipopolysaccharide-extraction with phenol water and further application of procedure, in Methods in Carbohydrate Chemistry, Whistler, R.L., Ed., New York: Academic, 1965, vol. 5, pp. 83–91.

    Google Scholar 

  34. Zdorovenko, E.L., Kadykova, A.A., Shashkov, A.S., Varbanets, L.D., Bulyhina, T.V., and Knirel, Y.A., Lipopolysaccharide of Pantoea agglomerans 7969: chemical identification, function and biological activity, Carbohydr. Polym., 2017, vol. 165, pp. 351–358.

    Article  CAS  Google Scholar 

  35. Zdorovenko, E.L., Kadykova, A.A., Shashkov, A.S., Varbanets, L.D., Bulyhina, T.V., and Knirel, Y.A., Lipopolysaccharides of Pantoea agglomerans 7604 and 8674 with structurally related O-polysaccharide chains: chemical identification and biological properties, Carbohydr. Polym., 2018, vol. 181, pp. 386–393.

    Article  CAS  Google Scholar 

  36. Zdorovenko, E.L., Kadykova, A.A., Shashkov, A.S., Varbanets, L.D., and Bulyhina, T.V., Pantoea agglomerans P1a lipopolysaccharide: structure of the O-specific polysaccharide and lipid A and biological activity, Carbohydr. Res., 2019, vol. 484, pp. 1067–1077.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Alexander Chizhov (Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia) for recording ESI MS spectrum of the lipid A of P. agglomerans P324.

Funding

The computer-assisted interpretation of the NMR data and elucidation of the OPS structure was supported by Russian Science Foundation grant 18-14-00098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Bulyhina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

ABBREVIATIONS

COSY, Correlation Spectroscopy, CSDB, Carbohydrate Structure Database; GLC, Gas Liquid Chromatography; GODDESS, Glycan-Optimized Database-Driven Empirical Spectrum Simulation; GRASS, Generation, Ranking and Assignment of Saccharide Structures; HSQC, Heteronuclear Single-Quantum Correlation; HR ESI MS, High-Resolution Electrospray Ionization Mass Spectro-metry; LPS, Lipopolysaccharide; NMR, Nuclear Magnetic Resonance; OPS, O-specific Polysaccharide; ROESY, Rotating-frame Overhauser Spectroscopy; TOCSY, Total Correlation Spectroscopy.

Additional information

Translated by the authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zdorovenko, E.L., Kadykova, A.A., Shashkov, A.S. et al. Structure and Biological Properties of the O-specific Polysaccharide and Lipid a from Pantoea agglomerans P324. Microbiology 90, 96–105 (2021). https://doi.org/10.1134/S0026261721010124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721010124

Keywords:

Navigation