Skip to main content
Log in

Methodologies for Measuring Microbial Methane Production and Emission from Soils—A Review

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Methane is an important greenhouse gas. Prediction of its long-term effect on climate changes requires understanding of the sources of its release into the atmosphere. The present work aimed to review the most widely used modern methods for measuring microbial production and emission of methane in soils, and to assess their applicability to various microbial ecosystems. A classification of methods for measuring methane production in microbial soil ecosystems is proposed, based on the basic physical and mathematical approaches to data processing for each method. Under laboratory conditions, methane production is determined by soil samples incubation and layered mass balance methods, which makes it possible to investigate the methanogenic potential of a microbial community for subsequent simulation of microbial processes; these methods, however, cannot be directly extrapolated to natural ecosystems. To determine methane production in field experiments, gradient methods are used, as well as a deep soil chamber technique developed for wetlands. Methods for measuring methane emission are described, as well as their advantages and limitations. While traditional chamber techniques are simple and therefore widely used, their implementation is limited by such factors as changes in environmental conditions caused by using the chamber, small spatial scales, and difficulties in chamber installation in some ecosystems. More recently developed micrometeorological methods are free of these limitations and provide for proper estimations of gas emissions from ecosystems even if these emissions are heterogeneous in space and time. To estimate emissions from such specific objects as landfills and livestock complexes or at large scales (regional or even global), the inverse modeling method is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Alm, J., Saarnio, S., Nykänen, H., Silvola, J., and Martikainen, P.J., Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands, Biogeochemistry, 1999, vol. 44, pp. 163–186.

    Google Scholar 

  2. Alperin, M.J., Reeburg, W.S., and Whiticar, M.J., Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation, Glob. Biogeochem. Cycles, 1988, vol. 2, pp. 279–288.

    CAS  Google Scholar 

  3. Aronson, E.L., Vann, D.R., and Helliker, B.R., Methane flux response to nitrogen amendment in an upland pine forest soil and riparian zone, J. Geophys. Res., 2012, vol. 117, G03012.

    Google Scholar 

  4. Arsenin, V.Ya., Metody matematicheskoi fiziki i spetzialnye funktsii (Methods of Mathematical Physics and Special Functions), Moscow: Nauka, 1984.

  5. Arya, P.S., Introduction to Micrometeorology, New York: Academic Press, 2001.

    Google Scholar 

  6. Aubinet, M., Vesala, T., and Papale, D., Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Berlin: Springer Science&Business Media, 2012.

    Google Scholar 

  7. Awasthi, K.D., Sitaula, B.K., Singh, B.R., and Bajracharya, R.M., Fluxes of methane and carbon dioxide from soil under forest, grazing land, irrigated rice and rainfed field crops in a watershed of Nepal, Biol. Fertil. Soils, 2005, vol. 41, pp. 163–172.

    CAS  Google Scholar 

  8. Baldocchi, D.D., Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Glob. Change Biol., 2003, vol. 9, pp. 479–492.

    Google Scholar 

  9. Baldocchi, D., Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—the state and future of the eddy covariance method, Glob. Change Biol., 2014, vol. 20, pp. 3600–3609.

    Google Scholar 

  10. Banik, A., Sen, M., and Sen, S.P., Methane emission from jute-retting tanks, Ecol. Engin., 1993, vol. 2, pp. 73–79.

    Google Scholar 

  11. Bartlett, K.B., Crill, P.M., Bonassi, J.A., Richey, J.E., and Harriss, R.C., Methane flux from the Amazon River floodplain: emissions during rising water, J. Geophys. Res., 1990, vol. 95, pp. 16773–16788.

    CAS  Google Scholar 

  12. Belova, S.E., Oshkin, I.Yu., Glagolev, M.V., Lap-shina, E.D., Maksyutov, Sh.Sh., and Dedysh, S.N., Methanotrophic bacteria in cold seeps of the floodplains of Northern rivers, Microbiology (Moscow), 2013, vol. 82, pp. 743–750.

    CAS  Google Scholar 

  13. Berezin, I.S. and Zhidkov, N.P., Metody vychislenii (Computational Methods), Moscow: Nauka, 1966, vol. 1.

  14. Bergamaschi, P., Frankenberg, C., Meirink, J.F., Krol, M., Dentener, F., Wagner, T., Platt, U., Kaplan, J.O., Körner, S., Heimann, M., Dlugokencky, E.J., and Goede, A., Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys. Res., 2007, vol. 112, D02304, pp. 1–26.

    Google Scholar 

  15. Berger, S., Praetzel, L.S.E., Goebel, M., Blodau, C., and Knorr, K.-H., Differential response of carbon cycling to long-term nutrient input and altered hydrological conditions in a continental Canadian peatland, Biogeosciences, 2018, vol. 15, pp. 885–903.

    CAS  Google Scholar 

  16. Bižić-Ionescu, M., Ionescu, D., Günthel, M., Tang, K.W., and Grossart, H.-P., Oxic methane cycling: new evidence for methane formation in oxic lake water, in Biogenesis of Hydrocarbons, Stams, A. and Sousa, D., Eds., Handbook of Hydrocarbon and Lipid Microbiology, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-53114-4_10-1

  17. Blodau, C., Basiliko, N., and Moore, T.R., Carbon turnover in peatland mesocosms exposed to different water table levels, Biogeochemistry, 2004, vol. 67, pp. 331–351.

    CAS  Google Scholar 

  18. Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., and Pfannkuche, O, Microscopic identification of a microbial consortium apparently mediating anaerobic methane oxidation above marine gas hydrate, Nature, 2000, vol. 407, pp. 623–626.

    CAS  PubMed  Google Scholar 

  19. Bridgham, S.D., Cadillo-Quiroz, H., Keller, J.K., and Zhuang, Q., Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales, Glob. Change Biol., 2013, vol. 19. pp. 1325–1346.

    Google Scholar 

  20. Burba, G.G., Kurbatova, Yu.A., Kuricheva, O.A., Avilov, V.K., and Mamkin, V.V., Metod turbulentnyh pulsatsii. Kratkoe prakticheskoe rukovodstvo (Eddy Covariance Technique: a Brief Practical Guide), Moscow: Severtsov Inst. Ecol. Evol., 2016.

  21. Butterbach-Bahl, K., Kock, M., Willibald, G., Hewett, B., Buhagiar, S., Papen, H., and Kiese, R., Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem, Global Biogeochem. Cycles, 2004, vol. 18, pp. 1–11.

    Google Scholar 

  22. Campeau, A., Lapierre, J.F., Vachon, D., and del Giorgio, P.A., Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Quebec, Global Biogeochem. Cycles, 2014, vol. 28, pp. 57–69.

    CAS  Google Scholar 

  23. Castellví, F., An advanced method based on surface renewal theory to estimate the friction velocity and the surface heat flux, Water Resour. Res., 2018, vol. 54, pp. 10134–10154.

    Google Scholar 

  24. Chan, A.S.K. and Parkin, T.B., Evaluation of potential inhibitors of methanogenesis and methane oxidation in a landfill cover soil, Soil Biol. Biochem., 2000, vol. 32, pp. 1581–1590.

    CAS  Google Scholar 

  25. Chen, J., Dietrich, F., Maazallahi, H., Forstmaier, A., Winkler, D., Hofmann, M.E., van der Gon, H.D., and Röckmann, T., Methane emissions from the Munich Oktoberfest, Atmospheric Chemistry & Physics, 2020, vol. 20, pp. 3683–3696.

    CAS  Google Scholar 

  26. Chin, K.-J. and Conrad, R., Intermediary metabolism in methanogenic paddy soil and the influence of temperature, FEMS Microbiol. Ecol., 1995, vol. 18, pp. 85–102. https://doi.org/10.1111/j.1574-6941.1995.tb00166.x

    Article  CAS  Google Scholar 

  27. Christiansen, J.R., Vesterdal, L., and Gundersen, P., Nitrous oxide and methane exchange in two small temperate forest catchments—effects of hydrological gradients and implications for global warming potentials of forest soils, Biogeochemistry, 2012, vol. 107, pp. 437–454.

    CAS  Google Scholar 

  28. Cicerone, R.J. and Shetter, J.D., Sources of atmospheric methane: measurements in rice paddies and a discussion, J. Geophys. Res., 1981, vol. 86, C8, pp. 7203–7209.

    CAS  Google Scholar 

  29. Conrad, R., Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal, Org. Geochem., 2005, vol. 36, pp. 739–752. https://doi.org/10.1016/j.orggeochem.2004.09.006

    Article  CAS  Google Scholar 

  30. Conrad, R. and Klose, M., Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots, FEMS Microbiol. Ecol., 1999, vol. 30, pp. 147–155.

    CAS  PubMed  Google Scholar 

  31. Conrad, R. and Klose, M., Selective inhibition of reactions involved in methanogenesis and fatty acid production on rice roots, FEMS Microbiol. Ecol., 2000, vol. 34, pp. 27–34.

    CAS  PubMed  Google Scholar 

  32. Conrad, R., Mayer, H.-P., and Wüst, M., Temporal change of gas metabolism by hydrogen-syntrophic methanogenic bacterial associations in anoxic paddy soil, FEMS Mic-robiol. Lett., 1989, vol. 62, pp. 265–273. https://doi.org/10.1111/j.1574-6968.1989.tb03701.x

    Article  CAS  Google Scholar 

  33. Conrad, R., Noll, M., Claus, P., Klose, M., Bastos, W.R., and Enrich-Prast, A., Stable carbon isotope discrimination and microbiology of methane formation in tropical anoxic lake sediments, Biogeosciences, 2011, vol. 8, pp. 795–814. https://doi.org/10.5194/bg-8-795-2011

    Article  CAS  Google Scholar 

  34. Day, S., Dell’Amico, M., Etheridge, D., Ong, C., Rodger, A., Sherman, B., and Barrett, D.J., Characterisation of Regional Fluxes of Methane in the Surat Basin, Queensland: CSIRO, 2013.

    Google Scholar 

  35. Deventer, M.J., Griffis, T.J., Roman, D.T., Kolka, R.K., Wood, J.D., Erickson, M., Baker, J.M., and Millet, D.B., Error characterization of methane fluxes and budgets derived from a long-term comparison of open- and closed-path eddy covariance systems, Agric. Forest Meteorol., 2019, vol. 278, p. 107638.

    Google Scholar 

  36. Ehhalt, D.H. and Schmidt, U., Sources and sinks of atmospheric methane, Pageoph., 1978, vol. 116, pp. 452–464.

    CAS  Google Scholar 

  37. Eller, G., Kanel, L., and Kruger, M., Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plußsee, Appl. Environ. Microbiol., 2005, vol. 71, pp. 8925–8928.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Erkkilä, K.-M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J.J., Lindroth, A., Peltola, O., Rantakari, M., Vesala, T., and Mammarella, I., Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method, Biogeosciences, 2018, vol. 15, pp. 429–445.

    Google Scholar 

  39. Etiope, G., Subsoil CO2 and CH4 and their advective transfer from faulted grassland to the atmosphere, J. Geophys. Res., 1999, vol. 104, no. D14, pp. 16889–16894.

    CAS  Google Scholar 

  40. Etiope, G., Natural emissions of methane from geological seepage in Europe, Atmospheric Environment, 2009, vol. 43, no. 7, pp. 1430–1443.

    CAS  Google Scholar 

  41. Fedorov, V.D. and Gil’manov, T.G., Ekologiya (Ecology), Moscow: Mosk. Gos. Univ., 1980.

    Google Scholar 

  42. Flesch, T.K., Wilson, J.D., Harper, L.A., Crenna, B.P., and Sharpe, R.R., Deducing ground-to-air emissions from observed trace gas concentrations: a field trial, J. Appl. Meteorol., 2004, vol. 43, pp. 487–502.

    Google Scholar 

  43. Filippov, L.P., Yavleniya perenosa (Transfer Phenomena), Moscow: Mosk. Gos. Univ., 1986.

  44. Foken, T. and Nappo, C.J., Micrometeorology, Berlin: Springer Science & Business Media, 2008.

    Google Scholar 

  45. Forsythe, G.E. and Wasow, W.R., Finite-Difference Methods for Partial Differential Equations, New York: John Wiley & Sons, 1960.

    Google Scholar 

  46. Foster-Wittig, T.A., Thoma, E.D., Green, R.B., Hater, G.R., Swan, N.D., and Chanton, J.P., Development of a mobile tracer correlation method for assessment of air emissions from landfills and other area sources, Atmospheric Environment, 2015, vol. 102, pp. 323–330.

    CAS  Google Scholar 

  47. Galand, P.E., Yrjälä, K, and Conrad, R., Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems, Biogeosciences, 2010, vol. 7, pp. 3893–3900. https://doi.org/10.5194/bg-7-3893-2010

    Article  CAS  Google Scholar 

  48. Ganzert, L., Jurgens, G., Münster, U., and Wagmer, D., Methanogenic communities in permafrost affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprint, FEMS Microbiol. Ecol., 2007, vol. 59, pp. 476–488.

    CAS  PubMed  Google Scholar 

  49. Glagolev, M.V., Modeling of production, oxidation and transportation processes of methane, in Global Environment Research Fund: Eco-Frontier Fellowship (EFF) in 1997, Tokyo: Environment Agency. Global Environment Department. Research & Information Office, 1998, pp. 79–111.

    Google Scholar 

  50. Glagolev, M.V., Inverse modelling method for the determination of the gas flux from the soil, Environmental Dynamics and Global Climate Change, 2010, vol. 1, pp. 17–36.

    Google Scholar 

  51. Glagolev, M.V. and Sabrekov, A.F., Thesis of N.A. Shnyrev: II. Principal notes, Environmental Dynamics and Global Climate Change, 2016, vol. 7, pp. 38–55.

  52. Glagolev, M.V., Golyshev, S.A., and Firsov, S.Yu., Evaluation of peatland plant-mediated methane transfer from soil into the atmosphere, in Bolota i zabolochennye lesa v svete zadach ustoichivogo prirodopol’zovaniya. Materialy konferentsii (Peatlands and Bog Forests in the Context of Sustainable Environmental Management: Conference Materials), Vomperskii, S.E., and Sirin, A.A., Eds., Moscow: GEOS, 1999, pp. 177–180.

  53. Glagolev, M.V., Sabrekov, A.F., Kleptsova, I.E., Filippov, I.V., Lapshina, E.D., Machida, T., and Maksyutov, Sh.Sh., Methane emission from bogs in the subtaiga of Western Siberia: The development of standard model, E-uras. Soil Sci., 2012, vol. 45, pp. 947–957.

    CAS  Google Scholar 

  54. Glagolev, M.V., Ilyasov, D.V., Terentieva, I.E., Sabrekov, A.F., Mochenov, S.Yu., and Maksutov, S.S., Methane and carbon dioxide fluxes in the waterlogged forests of south and middle taiga of Western Siberia, IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 138, 012005. https://doi.org/10.1088/1755-1315/138/1/012005

  55. Glagolev, M.V. and Sabrekov, A.F., Reply to A.V. Smagin: V. What is wrong with an “abiotic paper” and do we always need to take into account the abiotic gas absorption by soil?, Environmental Dynamics and Global Climate Change, 2019, vol. 10, pp. 48–63. https://doi.org/10.17816/edgcc16144

    Article  Google Scholar 

  56. Goldsmith, C.D., Chanton, J., Abichou, T., Swan, N., Green, R., and Hater, G., Methane emissions from 20 landfills across the United States using vertical radial plume mapping, J. Air & Waste Manag. Assoc., 2012, vol. 62, pp. 183–197.

    CAS  Google Scholar 

  57. Grossart, H-P., Frindte, K., Dziallas, C., Eckert, W., and Tang, K.W., Microbial methane production in oxygenated water column of an oligotrophic lake, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 19657–19661. https://doi.org/10.1073/pnas.1110716108

    Article  PubMed  Google Scholar 

  58. Günther, E., Kämpfe, L., Libbert, E., Müller, H.J., and Penzlin, H., Kompendium der allgemeinen Biologie, Jena: Gustav Fisher, 1982.

    Google Scholar 

  59. Haas-Laursen, D.E., Harley, D.E., and Prinn, R.C., Optimizing an inverse method to deduce time-varying emissions of trace gases, J. Geophys. Res., 1996, vol. 101, D17, pp. 22823–22831.

    CAS  Google Scholar 

  60. Harriss, R.C., Sebacher, D.I., and Day, F.P., Methane flux in the Great Dismal Swamp, Nature, 1982, vol. 297, pp. 673–674.

    CAS  Google Scholar 

  61. Hu, Y., Buttar, N.A., Tanny, J., Snyder, R.L., Savage, M.J., and Lakhiar, I.A., Surface renewal application for estimating evapotranspiration: a review, Adv. Meteorol., 2018, vol. 2018, p. 1690714. https://doi.org/10.1155/2018/1690714

    Article  Google Scholar 

  62. Hutchinson, G.L. and Mosier, A.R., Improved soil cover method for field measurement of nitrous oxide fluxes, Soil Sci. Soc. Amer. J., 1981, vol. 45, pp. 311−316.

    CAS  Google Scholar 

  63. Inoue, G., Takahashi, Y., Maksyutov, S., Sorokin, M., and Panikov, N., Methane emission rate from the wetland in West Siberia and its controlling factors, Proceeding of the 5th Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1996, Tsukuba: Isebu, 1997, pp. 34–39.

  64. Kallistova, A.Yu., Glagolev, M.V., Shnyrev, N.A., Kevbrina, M.V., Nekrasova, V.K., Chistotin, M.V., Faus-tova, E.V., Serebryanaya, M.I., and Nozhevnikova, A.N., Methane emission from the surface of landfill sites depending on the site age and the season, Ekol. Khimiya, 2006, vol. 15, pp. 13–21.

    Google Scholar 

  65. Kallistova, A.Yu., Merkel, A.Yu., Tarnovetskii, I.Yu., and Pimenov, N.V., Methane formation and oxidation by prokaryotes, Microbiology (Moscow), 2017, vol. 86, pp. 671–691.

    CAS  Google Scholar 

  66. Kamat, S.S., Williams, H.J., Dangott, L.J., Chakrabarti, M., Raushel, F.M., The catalytic mechanism for aerobic formation of methane by bacteria, Nature, 2013, vol. 497, pp. 132–136.

    CAS  PubMed  Google Scholar 

  67. Kasparov, S.V., Min’ko, O.I., Ammosova, Ya.M., and Ermakova, S.O., Gases of anaerobic origin in waterlogged soils, Biol. Nauki, 1986, pp. 99–103.

    Google Scholar 

  68. Kelley, C.A. and Chynoweth, D.P., Comparison of in situ and in vitro rates of methane release in freshwater sediments, Appl. Environ. Microbiol., 1980, vol. 40, pp. 287–293.

    Google Scholar 

  69. Kim, H.S., Maksyutov, S., Glagolev, M.V., Machida, T., Patra, P.K., Sudo, K., and Inoue, G., Evaluation of methane emissions from West Siberian wetlands based on inverse modeling, Environ. Res. Lett., 2011, vol. 6, art. 035201.

    Google Scholar 

  70. King, G.M., Berman, T., and Wiebe, W.J., Methane formation in the acidic peats of Okefenokee swamp, Georgia, Amer. Midland Naturalist, 1981, vol. 105, pp. 386–389.

    CAS  Google Scholar 

  71. Kobabe, S., Wagner, D., and Pfeiffer, E.M., Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridization, FEMS Microbiol. Ecol., 2004, vol. 50, pp. 13–23.

    CAS  PubMed  Google Scholar 

  72. Kohnert, K., Juhls, B., Muster, S., Antonova, S., Serafimovich, A., Metzger, S., Hartmann, J., and Sachs, T., Toward understanding the contribution of waterbodies to the methane emissions of a permafrost landscape on a regional scale – A case study from the Mackenzie Delta, Canada, Glob. Change Biol., 2018, vol. 24, pp. 3976–3989.

    Google Scholar 

  73. Kondrat’ev, K.Ya, Krapivin, V.F., and Savinykh, V.P., Perspektivy razvitiya tsivilizatsii: mnogomernyi analiz (Prospects of Civilization Development: Multidimensional Analysis), Moscow: Logos, 2003.

  74. Kotsyurbenko, O.R. and Glagolev, M.V., Protocols for measuring methanogenesis, in: Hydrocarbon and Lipid Microbiology Protocols (Springer Protocols Handbooks), M-cGenity, T.J., Timmis, K.N., and Nogales, B., Eds., Berlin Heidelberg: Springer, 2015. https://doi.org/10.1007/8623_2015_89

  75. Kotsyurbenko, O.R., Glagolev, M.V., Sabrekov, A.F., and Terentieva, I.E., Systems approach to the study of microbial methanogenesis in West-Siberian wetlands, Environmental Dynamics and Global Climate Change, 2020, vol. 11, pp. 1–19.

    Google Scholar 

  76. Krasnov, O.A., Maksyutov, S.S., Davydov, D.K., Fofonov, A.V., and Glagolev, M.V., Measurements of methane and carbon dioxide fluxes on the Bakchar bog in warm season, Proc. SPIE, 2015, vol. 9680, art. 968066.

    Google Scholar 

  77. Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H., Shurpali, N.J., Martikainen, P.J., Alm, J., and Wilmking, M., CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression, Biogeosciences, 2007, vol. 4, pp. 1005–1025.

    CAS  Google Scholar 

  78. Landau, L.D. and Lifshitz, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 6: Gidrodynamika (Hydrodynamics), Moscow: Nauka, 1988.

  79. ohila, A., Aalto, T., Aurela, M., Hatakka, J., Tuovinen, J.P., Kilkki, J., Penttilä, T., Vuorenmaa, J., Hänninen, P., Sutinen, R., Viisanen, Y., and Laurila, T., Large contribution of boreal upland forest soils to a catchment-scale CH4 balance in a wet year, Geophys. Res. Lett., 2016, vol. 43, pp. 2946–2953

    CAS  Google Scholar 

  80. Mah, R.A., Ward, D.M., Baresi, L., and Glass, T.L., Biogenesis of methane, Annu. Rev. Microbiol., 1977, vol. 31, pp. 309–341.

    CAS  PubMed  Google Scholar 

  81. Marik, T., Fischer, H., Conen, F., and Smith, K., Seasonal variations in stable carbon and hydrogen isotope ratios in methane from rice fields, Global Biogeochem. Cycles, 2002, vol. 16, pp. 41-1–41-11.

    Google Scholar 

  82. Matsevityi, Yu.M. and Lushpenko, S.F., Identifikatsiya teplofizicheskikh svoistv tverdykh tel (Identification of Thermophysical Properties of Solid Bodies), Kyiv: Naukova Dumka, 1990.

  83. McGinn, S.M. and Flesch, T.K., Ammonia and greenhouse gas emissions at beef cattle feedlots in Alberta Canada, Agric. Forest Meteorol., 2018, vol. 258, pp. 43–49.

    Google Scholar 

  84. Min’ko, O.I., Global gas function of soil, Eurasian Soil Sci., 1988, no. 7. pp. 59–75.

  85. Min’ko, O.I., Kasparov, S.V., and Amosova, Ya.M., Gaseous metabolic products of microbial cenoses of waterlogged soils, Zh. Obshch. Biol., 1987, vol. 48, pp. 182–193.

    Google Scholar 

  86. Mochenov, S.Yu., Churkina, A.I., Sabrekov, S.F., Glagolev, M.V., Il’yasov, D.V., Terentieva, I.E., and Maksyutov, S.S., Soils in seasonally flooded forests as methane sources: a case study of West Siberian South taiga, IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 138, 012012. https://doi.org/10.1088/1755-1315/138/1/012012

  87. Molchanov, A.G., Gas exchange of carbon dioxide from the surface of Sphagnum in boggy pine forests in southern taiga, Environmental Dynamics and Global Climate Change, 2017, vol. 8, pp. 43–54.

    Google Scholar 

  88. Mønster, J., Kjeldsen, P., and Scheutz, C., Methodologies for measuring fugitive methane emissions from landfills — a review, Waste Manag., 2019, vol. 87, pp. 835–859.

    PubMed  Google Scholar 

  89. Moran, J.J., House, C.H., Freeman, K.H., and Ferry, J.G., Trace methane oxidation studied in several Euryarchaeota under diverse conditions, Archaea, 2005, vol. 1, pp. 303–309.

    CAS  PubMed  Google Scholar 

  90. Nakano, T., Sawamoto, T., Morishita, T., Inoue, G., and Hatano, R., A comparison of regression methods for estimating soil-atmosphere diffusion gas fluxes by a closed-chamber technique, Soil Biol. Biochem., 2004, vol. 36, pp. 107–113.

    CAS  Google Scholar 

  91. Nozhevnikova, A., Glagolev, M., Nekrasova, V., Einola, J., Sormunen, K., and Rintala, J., The analysis of methods for measurement of methane oxidation in landfills, Water Sci. Technol., 2003, vol. 48, pp. 45–52.

    CAS  PubMed  Google Scholar 

  92. Nozhevnikova, A.N., Lifshitz, A.B., Lebedev, V.S., and Zavarzin, G.A., Emission of methane into the atmosphere from landfills in the former USSR, Chemosphere, 1993, vol. 26, pp. 401–417.

    CAS  Google Scholar 

  93. Odum, E.P., Basic Ecology, Philadelphia: Saunders College Publishing, 1983, vol. 1.

    Google Scholar 

  94. Orlov, D.S., Min’ko, O.I., Ammosova, Ya.M., Kas-parov, S.V., Glagolev, M.V., Sovremennye fizicheskie i khimicheskie metody issledovaniya pochv (Modern Physical and Chemical Methods of Soil Studies), Moscow: Mosk. Gos. Univ., 1987.

  95. Orphan, V.J., House, C.H., Hinrichs, K.-U., McKeegan, K.D., and DeLong, E.F., Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis, Science, 2001, vol. 293, pp. 484–487.

    CAS  PubMed  Google Scholar 

  96. Oshkin, I.Y., Wegner, C.E., Lüke, C., Glagolev, M.V., Filippov, I.V., Pimenov, N.V., Liesack, W., and Dedysh, S.N., Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers, Appl. Environ. Microbiol., 2014, vol. 80, pp. 5944–5954.

    PubMed  PubMed Central  Google Scholar 

  97. Panikov, N.S., Dedysh, S.N., Kolesnikov, O.M., Mardini, A.I., and Sizova, M.V., Metabolic and environmental control on methane emission from soils: mechanistic studies of mesotrophic fen in West Siberia, Water Air Soil Pollut. Focus, 2001, vol. 1, pp. 415–428.

    CAS  Google Scholar 

  98. Panteleev, A.V. and Kudryavtseva, I.A., Chislennye metody. Praktikum (Numerical Methods: a Practical Course), Moscow: INFRA-M, 2017.

  99. Prajapati, P. and Santos, E.A., Comparing methane emissions estimated using a backward-Lagrangian stochastic model and the eddy covariance technique in a beef cattle feedlot, Agric. Forest Meteorol., 2018, vol. 256, pp. 482–491.

    Google Scholar 

  100. Raghoebarsing, A.A., Pol, A., van de Pas-Schoonen, K.T., Smolders, A.J., Ettwig, K.F., Rijpstra, W.I., Schouten, S., Damsté, J.S., Op den Camp, H.J., Jetten, M.S., and Strous, M., A microbial consortium couples anaerobic methane oxidation to denitrification, Nature, 2006, vol. 440, pp. 918–921.

    CAS  PubMed  Google Scholar 

  101. Repeta, D.J., Ferrón, S., Sosa, O.A., Johnson, C.G., Repeta, L.D., Acker, M., DeLong, E.F., and Karl, D.M., Marine methane paradox explained by bacterial degradation of dissolved organic matter, Nature Geosci., 2016, vol. 9, pp. 884–887.

    CAS  Google Scholar 

  102. Sabrekov, A.F., Glagolev, M.V., Kleptsova, I.E., Machida, T., Maksyutov, S.S., Methane emission from mires of the West Siberian taiga, Euras. Soil Sci., 2013, vol. 46, pp. 1182–1193.

    CAS  Google Scholar 

  103. Samarskii, A.A., Teoriya raznostnykh skhem (Theory of Difference Methods), Moscow: Nauka, 1983.

  104. Savi, F., Di Bene, C., Canfora, L., Mondini, C., and Fares, S., Environmental and biological controls on CH4 exchange over an evergreen Mediterranean forest, Agric. Forest Meteorol., 2016, vol. 226, pp. 67–79. https://doi.org/10.1016/j.agrformet.2016.05.014

    Article  Google Scholar 

  105. Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H., and Seiler, W., A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy, J. Geophys. Res., 1989, vol. 94, D3, pp. 16405–16416.

    Google Scholar 

  106. Sebacher, D.I., Harriss, R.C., and Bartlett, K.B., Methane Emissions to the Atmosphere Through Aquatic Plants, J. Environ. Qual., 1985, vol. 14, pp. 40−46.

    CAS  Google Scholar 

  107. Shih, T.M., Numerical Heat Transfer, New York: CRC Press, 1984.

    Google Scholar 

  108. Shnyrev, N.A., Regime monitoring and gas exchange at the boundary of soil and atmoshere (methane emission fluxes in middle taiga peatland at the Mukhrino field station, West Siberia): Cand. Sci. (Biology) Dissertation, Moscow: Moscow State Univ., 2016.

  109. Suvočarev, K., Castellví, F., Reba, M.L., and Runkle, B.R.K., Surface renewal measurements of H, λE and CO2 fluxes over two different agricultural systems, Agric. Forest Meteorol., 2019, vol. 279, p. 107763.

    Google Scholar 

  110. Tathy, J.P., Cros, B., Delmas, R.A., Marenco, A., Servant, J., and Labat, M., Methane emission from flooded forest in Central Africa, J. Geophys. Res., 1992, vol. 97, D6, pp. 6159–6168.

    CAS  Google Scholar 

  111. Terentieva, I.E., Sabrekov, A.F., Glagolev, M.V., and Kotsyurbenko, O.R., Methane emission from municipal solid waste landfills, Russ. Meteorol. Hydrol., 2017, vol. 42, pp. 327–334.

    Google Scholar 

  112. Torres-Alvarado, R., Ramirez-Vives, F., Fernandez, F.J., and Barriga-Sosa, I., Methanogenesis and methane oxidation in wetlands. Implications in the global carbon cycle, Hidrobiologica, 2005, vol. 15, pp. 327–349.

    Google Scholar 

  113. Ueyama, M., Takai, Y., Takahashi, Y., Ide, R., Hamotani, K., Kosugi, Y., Takahashi, K., and Saigusa, N., High-precision measurements of the methane flux over a larch forest based on a hyperbolic relaxed eddy accumulation method using a laser spectrometer, Agric. Forest Meteorol., 2013, vol. 178, pp. 183–193.

    Google Scholar 

  114. Ueyama, M., Yoshikawa, K., and Takagi, K., A cool-te-mperate young larch plantation as a net methane source—a 4-year continuous hyperbolic relaxed eddy accumulation and chamber measurements, Atmosph. Environ., 2018, vol. 184, pp. 110–120.

    CAS  Google Scholar 

  115. Ullah, S., Frasier, R., Pelletier, L., and Moore, T.R., Greenhouse gas fluxes from boreal forest soils during the snow-free period in Quebec, Canada, Can. J. For. Res., 2009, vol. 39, pp. 666–680.

    CAS  Google Scholar 

  116. Van Huissteden, J., Maximov, T.C., and Dolman, A.J., High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia), J. Geophys. Res., 2005, vol. 110, G02002.

    Google Scholar 

  117. Waddington, J.M., Roulet, N.T., and Swanson, R.V., Water table control of CH4 emission enhancement by vascular plants in boreal peatlands, J. Geophys. Res., 1996, vol. 101, D17, pp. 22775–22785.

    CAS  Google Scholar 

  118. Ware, J., Kort, E.A., Duren, R., Mueller, K.L., Verhulst, K., and Yadav, V., Detecting urban emissions changes and events with a near-real-time-capable inversion system, J. Geophys. Res.: Atmospheres, 2019, vol. 124, pp. 5117–5130.

    CAS  Google Scholar 

  119. Whiticar, M. J., Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane, Chem. Geology, 1999, vol. 161, pp. 291–314.

    CAS  Google Scholar 

  120. Yevdokimov, I.V., Yusupov, I.A., Larionova, A.A., Bykhovets, S.S., Glagolev, M.V., and Shavnin, S.A., Thermal impact of gas flares on the biological activity of soils, Euras. Soil Sci., 2017, vol. 50, pp. 1455–1462.

    CAS  Google Scholar 

  121. Zavarzin, G.A., Seöhngen’s psychrophilic cycle, Ekol. K-himiya, 1995, vol. 4, pp. 3–12.

    Google Scholar 

  122. Zeikus, J.G. and Winfrey, M.R., Temperature limitation of methanogenesis in aquatic sediments, Appl. Environ. Microbiol., 1976, vol. 31, pp. 99–107.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to S.Yu. Mochenov and A.V. Smagin for the discussion of the classification of methods and the necessity to include the porosity factor in the formulas, respectively, as well as to A.A. Lebedev for partial technical editing of the manuscript. We are also grateful to S.N. Dedysh (Research Center of Biotechnology, Russian Academy of Sciences) for critical analysis and valuable comments during the preparation of the manuscript.

Funding

This work was supported by the Russian Foundation for Basic Research project no. 18-45-860015 r_a; it was also supported in part via the state assignment project AAAA-A15-115122810146-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Glagolev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glagolev, M.V., Kotsyurbenko, O.R., Sabrekov, A.F. et al. Methodologies for Measuring Microbial Methane Production and Emission from Soils—A Review. Microbiology 90, 1–19 (2021). https://doi.org/10.1134/S0026261721010057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721010057

Keywords:

Navigation