Skip to main content
Log in

Atomistic Simulation on the Mechanical Properties of Diffusion Bonded Zr-Cu Metallic Glasses with Oxidized Interfaces

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A novel welding technique of diffusion bonding for Zr-Cu metallic glass with pre-oxidized surfaces is proposed in this study, which is systematically investigated by molecular dynamics (MD) simulation. Compared with the conventional welding technique, the diffusion bonding process can be well implemented below the crystallization temperature of metallic glass. The obtained structure possesses glass–glass interfaces (GGIs) similar with those in nano-glasses. As revealed by MD simulation, the diffusion bonded metallic glasses possess enhanced mechanical strength and ductility that generally do not exist in nano-glasses and their bulk metallic glass counterparts. The GGIs are found to hinder the propagation of shear bands, where there is strong bonding between Zr and O and the segregated Cu and ZrO2 clusters could induce extra plasticity. The results demonstrate that the diffusion bonding of metallic glass with pre-oxidized surfaces could provide an alternative approach in solving the longstanding issue of size limitation on metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Shen, X.C. Zheng, G.P. Zheng, Metall. Mater. Trans. A 42, 211–218 (2011)

    Article  Google Scholar 

  2. T. Burgess, M. Ferry, Mater. Today 12, 24–32 (2009)

    Article  CAS  Google Scholar 

  3. Y. Kawamura, T. Shoji, Y. Ohno, J. Non. Cryst. Solids 317, 152–157 (2003)

    Article  CAS  Google Scholar 

  4. J. Kim, Y. Kawamura, Scr. Mater. 56, 709–712 (2007)

    Article  CAS  Google Scholar 

  5. C.H. Wong, C.H. Shek, Scr. Mater. 49, 393–397 (2003)

    Article  CAS  Google Scholar 

  6. Y. Kawamura, Y. Ohno, Scr. Mater. 45, 279–285 (2001)

    Article  CAS  Google Scholar 

  7. Y. Kawamura, Y. Ohno, Scr. Mater. 45, 127–132 (2001)

    Article  CAS  Google Scholar 

  8. H. Gleiter, Beilstein J. Nanotechnol. 4, 517–533 (2013)

    Article  Google Scholar 

  9. H. Gleiter, T. Schimmel, and H. Hahn: Nano Today, 2014, 9, vol. 9.

  10. P. Zhou, Q. Li, P. Gong, X. Wang, M. Zhang, Microelectron. Eng 229, 1113–1163 (2020)

    Article  Google Scholar 

  11. C. Guo, Y. Fang, B. Wu, S. Lan, G. Peng, X.L. Wang, H. Hahn, H. Gleiter, T. Feng, Mater. Res. Lett. 5, 293–299 (2017)

    Article  CAS  Google Scholar 

  12. O. Adjaoud, K. Albe, Acta Mater. 145, 322–330 (2018)

    Article  CAS  Google Scholar 

  13. O. Adjaoud, K. Albe, Acta Mater. 113, 284–292 (2016)

    Article  CAS  Google Scholar 

  14. D. Şopu, Y. Ritter, H. Gleiter, K. Albe, Phys. Rev. B 83, 1–4 (2011)

    Google Scholar 

  15. B. Cheng, J.R. Trelewicz, J. Mater. Res. 34, 2325–2336 (2019)

    Article  CAS  Google Scholar 

  16. O. Adjaoud, K. Albe, Acta Mater. 168, 393–400 (2019)

    Article  CAS  Google Scholar 

  17. D. Şopu, K. Albe, Beilstein J. Nanotechnol. 6, 537–545 (2015)

    Article  Google Scholar 

  18. Z.D. Sha, P.S. Branicio, Q.X. Pei, Z.S. Liu, H.P. Lee, T.E. Tay, T.J. Wang, Nanoscale 7, 17404–17409 (2015)

    Article  CAS  Google Scholar 

  19. K. Albe, Y. Ritter, D. Şopu, Mech. Mater. 67, 94–103 (2013)

    Article  Google Scholar 

  20. S. Adibi, P.S. Branicio, Y.W. Zhang, S.P. Joshi, J. Appl. Phys 116, 043522–043531 (2014)

    Article  Google Scholar 

  21. Y. Ritter, D. Opu, H. Gleiter, K. Albe, Acta Mater. 59, 6588–6593 (2011)

    Article  CAS  Google Scholar 

  22. S. Adibi, P.S. Branicio, S.P. Joshi, Sci. Rep. 5, 1–9 (2015)

    Article  Google Scholar 

  23. Y. Zhao, X. Peng, C. Huang, B. Yang, N. Hu, and M. Wang, 2019, vol. 9, pp. 1–17.

  24. S.H. Nandam, O. Adjaoud, R. Schwaiger, Y. Ivanisenko, M.R. Chellali, D. Wang, K. Albe, H. Hahn, Acta Mater. 193, 252–260 (2020)

    Article  CAS  Google Scholar 

  25. M. Zhang, Q.M. Li, J.C. Zhang, G.P. Zheng, X.Y. Wang, J. Alloys Compd. 801, 318–326 (2019)

    Article  CAS  Google Scholar 

  26. S. Plimpton, J. Comput. Phys. 117, 1–42 (1997)

    Article  Google Scholar 

  27. P. Hirel, Comput. Phys. Commun. 197, 212–219 (2015)

    Article  CAS  Google Scholar 

  28. Y.Q. Cheng, E. Ma, Prog. Mater. Sci. 56, 379–473 (2011)

    Article  CAS  Google Scholar 

  29. T. Liang, T.R. Shan, Y.T. Cheng, B.D. Devine, M. Noordhoek, Y. Li, Z. Lu, S.R. Phillpot, S.B. Sinnott, Mater. Sci. Eng. R Reports 74, 255–279 (2013)

    Article  Google Scholar 

  30. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012–015017 (2010)

    Article  Google Scholar 

  31. M.L. Falk, J.S. Langer, Phys. Rev. E 57, 14 (1998)

    Article  Google Scholar 

  32. F. Shimizu, S. Ogata, J. Li, Mater. Trans. 48, 2923–2927 (2007)

    Article  CAS  Google Scholar 

  33. J. Li and F. Shimizu: Report, 2005, pp. 4–6.

  34. Y.Q. Cheng, A.J. Cao, E. Ma, Acta Mater. 57, 3253–3267 (2009)

    Article  CAS  Google Scholar 

  35. C. Piconi, G. Maccauro, Biomaterials 20, 1–25 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (PolyU152607/16E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 14, 2020; accepted February 12, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zheng, G. Atomistic Simulation on the Mechanical Properties of Diffusion Bonded Zr-Cu Metallic Glasses with Oxidized Interfaces. Metall Mater Trans A 52, 1939–1946 (2021). https://doi.org/10.1007/s11661-021-06204-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06204-w

Navigation